

 [image: OPTUNA]

Optuna-Integration: The integration modules of Optuna

Optuna-Integration is a package of the integration modules of Optuna [https://optuna.org].
This package allows us to use Optuna, an automatic Hyperparameter optimization
software framework, integrated with many useful tools like PyTorch, sklearn,
TensorFlow, etc.

Communication

	GitHub Discussions [https://github.com/optuna/optuna-integration/discussions] for questions.

	GitHub Issues [https://github.com/optuna/optuna-integration/issues] for bug
reports and feature requests.

Contribution

Any contributions to Optuna are welcome! When you send a pull request,
please follow the contribution guide [https://github.com/optuna/optuna-integration/blob/main/CONTRIBUTING.md].

License

MIT License (see LICENSE [https://github.com/optuna/optuna-integration/blob/main/LICENSE]).

Reference

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization
Framework. In KDD (arXiv [https://arxiv.org/abs/1907.10902]).

Contents:

	Installation

	API Reference for Optuna-Integration
	AllenNLP

	BoTorch

	Catalyst

	CatBoost

	Chainer

	Dask

	fast.ai

	Keras

	LightGBM

	MLflow

	MXNet

	pycma

	PyTorch

	scikit-optimize

	SHAP

	sklearn

	skorch

	TensorBoard

	TensorFlow

	Weights & Biases

	XGBoost

Indices and tables

	Index

	Module Index

	Search Page

Installation

Optuna-Integration supports Python 3.7 or newer.

We recommend to install Optuna-Integration via pip:

$ pip install optuna-integration

You can also install the development version of Optuna-Integration from main branch of Git repository:

$ pip install git+https://github.com/optuna/optuna-integration.git

API Reference for Optuna-Integration

The Optuna-Integration package contains classes used to integrate Optuna with external machine learning frameworks.

All of these classes can be imported in two ways. One is “from optuna.integration import xxx” like a module in Optuna,
and the other is “from optuna_integration import xxx” as an Optuna-Integration specific module.
The former is provided for backward compatibility.

For most of the ML frameworks supported by Optuna, the corresponding Optuna integration class serves only to implement a callback object and functions, compliant with the framework’s specific callback API, to be called with each intermediate step in the model training. The functionality implemented in these callbacks across the different ML frameworks includes:

	Reporting intermediate model scores back to the Optuna trial using optuna.trial.Trial.report [https://optuna.readthedocs.io/en/stable/reference/generated/optuna.trial.Trial.html#optuna.trial.Trial.report],

	According to the results of optuna.trial.Trial.should_prune [https://optuna.readthedocs.io/en/stable/reference/generated/optuna.trial.Trial.html#optuna.trial.Trial.should_prune], pruning the current model by raising optuna.TrialPruned [https://optuna.readthedocs.io/en/stable/reference/generated/optuna.TrialPruned.html#optuna.TrialPruned], and

	Reporting intermediate Optuna data such as the current trial number back to the framework, as done in MLflowCallback.

For scikit-learn, an integrated OptunaSearchCV estimator is available that combines scikit-learn BaseEstimator functionality with access to a class-level Study object.

AllenNLP

	optuna_integration.AllenNLPExecutor

	AllenNLP extension to use optuna with Jsonnet config file.

	optuna_integration.allennlp.dump_best_config

	Save JSON config file with environment variables and best performing hyperparameters.

	optuna_integration.AllenNLPPruningCallback

	AllenNLP callback to prune unpromising trials.

BoTorch

	optuna_integration.BoTorchSampler

	A sampler that uses BoTorch, a Bayesian optimization library built on top of PyTorch.

	optuna_integration.botorch.ehvi_candidates_func

	Expected Hypervolume Improvement (EHVI).

	optuna_integration.botorch.logei_candidates_func

	Log Expected Improvement (LogEI).

	optuna_integration.botorch.qei_candidates_func

	Quasi MC-based batch Expected Improvement (qEI).

	optuna_integration.botorch.qnei_candidates_func

	Quasi MC-based batch Noisy Expected Improvement (qNEI).

	optuna_integration.botorch.qehvi_candidates_func

	Quasi MC-based batch Expected Hypervolume Improvement (qEHVI).

	optuna_integration.botorch.qnehvi_candidates_func

	Quasi MC-based batch Noisy Expected Hypervolume Improvement (qNEHVI).

	optuna_integration.botorch.qparego_candidates_func

	Quasi MC-based extended ParEGO (qParEGO) for constrained multi-objective optimization.

Catalyst

	optuna_integration.CatalystPruningCallback

	Catalyst callback to prune unpromising trials.

CatBoost

	optuna_integration.CatBoostPruningCallback

	Callback for catboost to prune unpromising trials.

Chainer

	optuna_integration.ChainerPruningExtension

	Chainer extension to prune unpromising trials.

	optuna_integration.ChainerMNStudy

	A wrapper of Study to incorporate Optuna with ChainerMN.

Dask

	optuna_integration.DaskStorage

	Dask-compatible storage class.

fast.ai

	optuna_integration.FastAIV1PruningCallback

	FastAI callback to prune unpromising trials for fastai.

	optuna_integration.FastAIV2PruningCallback

	FastAI callback to prune unpromising trials for fastai.

	optuna_integration.FastAIPruningCallback

	alias of FastAIV2PruningCallback

Keras

	optuna_integration.KerasPruningCallback

	Keras callback to prune unpromising trials.

LightGBM

	optuna_integration.LightGBMPruningCallback

	Callback for LightGBM to prune unpromising trials.

	optuna_integration.lightgbm.train

	Wrapper of LightGBM Training API to tune hyperparameters.

	optuna_integration.lightgbm.LightGBMTuner

	Hyperparameter tuner for LightGBM.

	optuna_integration.lightgbm.LightGBMTunerCV

	Hyperparameter tuner for LightGBM with cross-validation.

MLflow

	optuna_integration.MLflowCallback

	Callback to track Optuna trials with MLflow.

MXNet

	optuna_integration.MXNetPruningCallback

	MXNet callback to prune unpromising trials.

pycma

	optuna_integration.CmaEsSampler

	Wrapper class of PyCmaSampler for backward compatibility.

	optuna_integration.PyCmaSampler

	A Sampler using cma library as the backend.

PyTorch

	optuna_integration.PyTorchIgnitePruningHandler

	PyTorch Ignite handler to prune unpromising trials.

	optuna_integration.PyTorchLightningPruningCallback

	PyTorch Lightning callback to prune unpromising trials.

	optuna_integration.TorchDistributedTrial

	A wrapper of Trial to incorporate Optuna with PyTorch distributed.

scikit-optimize

	optuna_integration.SkoptSampler

	Sampler using Scikit-Optimize as the backend.

SHAP

	optuna_integration.ShapleyImportanceEvaluator

	Shapley (SHAP) parameter importance evaluator.

sklearn

	optuna_integration.OptunaSearchCV

	Hyperparameter search with cross-validation.

skorch

	optuna_integration.SkorchPruningCallback

	Skorch callback to prune unpromising trials.

TensorBoard

	optuna_integration.TensorBoardCallback

	Callback to track Optuna trials with TensorBoard.

TensorFlow

	optuna_integration.TFKerasPruningCallback

	tf.keras callback to prune unpromising trials.

Weights & Biases

	optuna_integration.WeightsAndBiasesCallback

	Callback to track Optuna trials with Weights & Biases.

XGBoost

	optuna_integration.XGBoostPruningCallback

	Callback for XGBoost to prune unpromising trials.

optuna_integration.AllenNLPExecutor

	
class optuna_integration.AllenNLPExecutor(trial, config_file, serialization_dir, metrics='best_validation_accuracy', *, include_package=None, force=False, file_friendly_logging=False)

	AllenNLP extension to use optuna with Jsonnet config file.

See the examples of objective function [https://github.com/optuna/optuna-examples/tree/main/allennlp/allennlp_jsonnet.py].

You can also see the tutorial of our AllenNLP integration on
AllenNLP Guide [https://guide.allennlp.org/hyperparameter-optimization].

Note

From Optuna v2.1.0, users have to cast their parameters by using methods in Jsonnet.
Call std.parseInt for integer, or std.parseJson for floating point.
Please see the example configuration [https://github.com/optuna/optuna-examples/tree/main/allennlp/classifier.jsonnet].

Note

In AllenNLPExecutor,
you can pass parameters to AllenNLP by either defining a search space using
Optuna suggest methods or setting environment variables just like AllenNLP CLI.
If a value is set in both a search space in Optuna and the environment variables,
the executor will use the value specified in the search space in Optuna.

	Parameters:

	
	trial (optuna.Trial) – A Trial corresponding to the current evaluation
of the objective function.

	config_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Config file for AllenNLP.
Hyperparameters should be masked with std.extVar.
Please refer to the config example [https://github.com/allenai/allentune/blob/master/examples/classifier.jsonnet].

	serialization_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path which model weights and logs are saved.

	metrics (str [https://docs.python.org/3/library/stdtypes.html#str]) – An evaluation metric. GradientDescrentTrainer.train() [https://docs.allennlp.org/main/api/training/gradient_descent_trainer/#train] of AllenNLP
returns a dictionary containing metrics after training.
AllenNLPExecutor accesses the dictionary
by the key metrics you specify and use it as a objective value.

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], an executor overwrites the output directory if it exists.

	file_friendly_logging (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], tqdm status is printed on separate lines and slows tqdm refresh rate.

	include_package (str [https://docs.python.org/3/library/stdtypes.html#str] | list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) – Additional packages to include.
For more information, please see
AllenNLP documentation [https://docs.allennlp.org/master/api/commands/train/].

Warning

Deprecated in v3.5.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v5.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.5.0.

Methods

	run()

	Train a model using AllenNLP.

	
run()

	Train a model using AllenNLP.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

optuna_integration.allennlp.dump_best_config

	
optuna_integration.allennlp.dump_best_config(input_config_file, output_config_file, study)

	Save JSON config file with environment variables and best performing hyperparameters.

	Parameters:

	
	input_config_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input Jsonnet config file used with
AllenNLPExecutor.

	output_config_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output JSON config file.

	study (Study) – Instance of Study.
Note that optimize() must have been called.

	Return type:

	None

Warning

Deprecated in v3.5.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v5.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.5.0.

optuna_integration.AllenNLPPruningCallback

	
class optuna_integration.AllenNLPPruningCallback(trial=None, monitor=None)

	AllenNLP callback to prune unpromising trials.

See the example [https://github.com/optuna/optuna-examples/tree/main/allennlp/allennlp_simple.py]
if you want to add a pruning callback which observes a metric.

You can also see the tutorial of our AllenNLP integration on
AllenNLP Guide [https://guide.allennlp.org/hyperparameter-optimization].

Note

When AllenNLPPruningCallback is instantiated in Python script,
trial and monitor are mandatory.

On the other hand, when AllenNLPPruningCallback is used with
AllenNLPExecutor, trial and monitor
would be None [https://docs.python.org/3/library/constants.html#None]. AllenNLPExecutor sets
environment variables for a study name, trial id, monitor, and storage.
Then AllenNLPPruningCallback
loads them to restore trial and monitor.

Note

Currently, build-in pruners are supported except for
PatientPruner.

	Parameters:

	
	trial (Trial | None) – A Trial corresponding to the current evaluation of the
objective function.

	monitor (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – An evaluation metric for pruning, e.g. validation_loss or
validation_accuracy.

Warning

Deprecated in v3.5.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v5.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.5.0.

Methods

	on_epoch(trainer, metrics, epoch[, is_primary])

	Check if a training reaches saturation.

	register(*args, **kwargs)

	Stub method for TrainerCallback.register.

	
on_epoch(trainer, metrics, epoch, is_primary=True, **_)

	Check if a training reaches saturation.

	Parameters:

	
	trainer (GradientDescentTrainer) – AllenNLP’s trainer

	metrics (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – Dictionary of metrics.

	epoch (int [https://docs.python.org/3/library/functions.html#int]) – Number of current epoch.

	is_primary (bool [https://docs.python.org/3/library/functions.html#bool]) – A flag for AllenNLP internal.

	_ (Any) –

	Return type:

	None

	
classmethod register(*args, **kwargs)

	Stub method for TrainerCallback.register.

This method has the same signature as
Registrable.register [https://docs.allennlp.org/master/api/common/registrable/#registrable] in AllenNLP.

	Parameters:

	
	args (Any [https://docs.python.org/3/library/typing.html#typing.Any]) –

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) –

	Return type:

	Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

optuna_integration.BoTorchSampler

	
class optuna_integration.BoTorchSampler(*, candidates_func=None, constraints_func=None, n_startup_trials=10, consider_running_trials=False, independent_sampler=None, seed=None, device=None)

	A sampler that uses BoTorch, a Bayesian optimization library built on top of PyTorch.

This sampler allows using BoTorch’s optimization algorithms from Optuna to suggest parameter
configurations. Parameters are transformed to continuous space and passed to BoTorch, and then
transformed back to Optuna’s representations. Categorical parameters are one-hot encoded.

See also

See an example [https://github.com/optuna/optuna-examples/blob/main/multi_objective/botorch_simple.py] how to use the sampler.

See also

See the BoTorch [https://botorch.org/] homepage for details and for how to implement
your own candidates_func.

Note

An instance of this sampler should not be used with different studies when used with
constraints. Instead, a new instance should be created for each new study. The reason for
this is that the sampler is stateful keeping all the computed constraints.

	Parameters:

	
	candidates_func (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor], torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor], torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None, torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor], torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None], torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]] | None) – An optional function that suggests the next candidates. It must take the training
data, the objectives, the constraints, the search space bounds and return the next
candidates. The arguments are of type torch.Tensor. The return value must be a
torch.Tensor. However, if constraints_func is omitted, constraints will be
None [https://docs.python.org/3/library/constants.html#None]. For any constraints that failed to compute, the tensor will contain
NaN.

If omitted, it is determined automatically based on the number of objectives and
whether a constraint is specified. If the
number of objectives is one and no constraint is specified, log-Expected Improvement
is used. If constraints are specified, quasi MC-based batch Expected Improvement
(qEI) is used.
If the number of objectives is either two or three, Quasi MC-based
batch Expected Hypervolume Improvement (qEHVI) is used. Otherwise, for a larger number
of objectives, analytic Expected Hypervolume Improvement is used if no constraints
are specified, or the faster Quasi MC-based extended ParEGO (qParEGO) is used if
constraints are present.

The function should assume maximization of the objective.

See also

See optuna_integration.botorch.qei_candidates_func() for an example.

	constraints_func (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[FrozenTrial], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]]] | None) – An optional function that computes the objective constraints. It must take a
FrozenTrial and return the constraints. The return value must
be a sequence of float [https://docs.python.org/3/library/functions.html#float] s. A value strictly larger than 0 means that a
constraint is violated. A value equal to or smaller than 0 is considered feasible.

If omitted, no constraints will be passed to candidates_func nor taken into
account during suggestion.

	n_startup_trials (int [https://docs.python.org/3/library/functions.html#int]) – Number of initial trials, that is the number of trials to resort to independent
sampling.

	consider_running_trials (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the acquisition function takes into consideration the running parameters
whose evaluation has not completed. Enabling this option is considered to improve the
performance of parallel optimization.

Note

Added in v3.2.0 as an experimental argument.

	independent_sampler (BaseSampler | None) – An independent sampler to use for the initial trials and for parameters that are
conditional.

	seed (int [https://docs.python.org/3/library/functions.html#int] | None) – Seed for random number generator.

	device (torch.device [https://pytorch.org/docs/stable/tensor_attributes.html#torch.device] | None) – A torch.device to store input and output data of BoTorch. Please set a CUDA device
if you fasten sampling.

Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Methods

	after_trial(study, trial, state, values)

	Trial post-processing.

	before_trial(study, trial)

	Trial pre-processing.

	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

	reseed_rng()

	Reseed sampler's random number generator.

	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.

	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.

Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	state (TrialState) – Resulting trial state.

	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.

	Return type:

	None

	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.

Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.

	Return type:

	None

	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	Returns:

	A dictionary containing the parameter names and parameter’s distributions.

	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]

See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().

	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.

	Return type:

	None

	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.

Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.

	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.

	Returns:

	A parameter value.

	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.

Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	search_space (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().

	Returns:

	A dictionary containing the parameter names and the values.

	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

optuna_integration.botorch.ehvi_candidates_func

	
optuna_integration.botorch.ehvi_candidates_func(train_x, train_obj, train_con, bounds, pending_x)

	Expected Hypervolume Improvement (EHVI).

The default value of candidates_func in BoTorchSampler
with multi-objective optimization without constraints.

See also

qei_candidates_func() for argument and return value
descriptions.

Note

Added in v3.5.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.5.0.

	Parameters:

	
	train_x (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) –

	train_obj (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) –

	train_con (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) –

	bounds (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) –

	pending_x (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) –

	Return type:

	torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

optuna_integration.botorch.logei_candidates_func

	
optuna_integration.botorch.logei_candidates_func(train_x, train_obj, train_con, bounds, pending_x)

	Log Expected Improvement (LogEI).

The default value of candidates_func in BoTorchSampler
with single-objective optimization.

	Parameters:

	
	train_x (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Previous parameter configurations. A torch.Tensor of shape
(n_trials, n_params). n_trials is the number of already observed trials
and n_params is the number of parameters. n_params may be larger than the
actual number of parameters if categorical parameters are included in the search
space, since these parameters are one-hot encoded.
Values are not normalized.

	train_obj (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Previously observed objectives. A torch.Tensor of shape
(n_trials, n_objectives). n_trials is identical to that of train_x.
n_objectives is the number of objectives. Observations are not normalized.

	train_con (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) – Objective constraints. A torch.Tensor of shape (n_trials, n_constraints).
n_trials is identical to that of train_x. n_constraints is the number of
constraints. A constraint is violated if strictly larger than 0. If no constraints are
involved in the optimization, this argument will be None [https://docs.python.org/3/library/constants.html#None].

	bounds (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Search space bounds. A torch.Tensor of shape (2, n_params). n_params is
identical to that of train_x. The first and the second rows correspond to the
lower and upper bounds for each parameter respectively.

	pending_x (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) – Pending parameter configurations. A torch.Tensor of shape
(n_pending, n_params). n_pending is the number of the trials which are already
suggested all their parameters but have not completed their evaluation, and
n_params is identical to that of train_x.

	Returns:

	Next set of candidates. Usually the return value of BoTorch’s optimize_acqf.

	Return type:

	torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

optuna_integration.botorch.qei_candidates_func

	
optuna_integration.botorch.qei_candidates_func(train_x, train_obj, train_con, bounds, pending_x)

	Quasi MC-based batch Expected Improvement (qEI).

	Parameters:

	
	train_x (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Previous parameter configurations. A torch.Tensor of shape
(n_trials, n_params). n_trials is the number of already observed trials
and n_params is the number of parameters. n_params may be larger than the
actual number of parameters if categorical parameters are included in the search
space, since these parameters are one-hot encoded.
Values are not normalized.

	train_obj (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Previously observed objectives. A torch.Tensor of shape
(n_trials, n_objectives). n_trials is identical to that of train_x.
n_objectives is the number of objectives. Observations are not normalized.

	train_con (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) – Objective constraints. A torch.Tensor of shape (n_trials, n_constraints).
n_trials is identical to that of train_x. n_constraints is the number of
constraints. A constraint is violated if strictly larger than 0. If no constraints are
involved in the optimization, this argument will be None [https://docs.python.org/3/library/constants.html#None].

	bounds (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Search space bounds. A torch.Tensor of shape (2, n_params). n_params is
identical to that of train_x. The first and the second rows correspond to the
lower and upper bounds for each parameter respectively.

	pending_x (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) – Pending parameter configurations. A torch.Tensor of shape
(n_pending, n_params). n_pending is the number of the trials which are already
suggested all their parameters but have not completed their evaluation, and
n_params is identical to that of train_x.

	Returns:

	Next set of candidates. Usually the return value of BoTorch’s optimize_acqf.

	Return type:

	torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

optuna_integration.botorch.qnei_candidates_func

	
optuna_integration.botorch.qnei_candidates_func(train_x, train_obj, train_con, bounds, pending_x)

	Quasi MC-based batch Noisy Expected Improvement (qNEI).

This function may perform better than qEI (qei_candidates_func) when
the evaluated values of objective function are noisy.

See also

qei_candidates_func() for argument and return value
descriptions.

Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

	Parameters:

	
	train_x (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) –

	train_obj (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) –

	train_con (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) –

	bounds (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) –

	pending_x (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) –

	Return type:

	torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

optuna_integration.botorch.qehvi_candidates_func

	
optuna_integration.botorch.qehvi_candidates_func(train_x, train_obj, train_con, bounds, pending_x)

	Quasi MC-based batch Expected Hypervolume Improvement (qEHVI).

The default value of candidates_func in BoTorchSampler
with multi-objective optimization when the number of objectives is three or less.

See also

qei_candidates_func() for argument and return value
descriptions.

Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

	Parameters:

	
	train_x (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) –

	train_obj (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) –

	train_con (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) –

	bounds (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) –

	pending_x (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) –

	Return type:

	torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

optuna_integration.botorch.qnehvi_candidates_func

	
optuna_integration.botorch.qnehvi_candidates_func(train_x, train_obj, train_con, bounds, pending_x)

	Quasi MC-based batch Noisy Expected Hypervolume Improvement (qNEHVI).

According to Botorch/Ax documentation,
this function may perform better than qEHVI (qehvi_candidates_func).
(cf. https://botorch.org/tutorials/constrained_multi_objective_bo)

See also

qei_candidates_func() for argument and return value
descriptions.

Note

Added in v3.1.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.1.0.

	Parameters:

	
	train_x (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) –

	train_obj (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) –

	train_con (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) –

	bounds (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) –

	pending_x (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) –

	Return type:

	torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

optuna_integration.botorch.qparego_candidates_func

	
optuna_integration.botorch.qparego_candidates_func(train_x, train_obj, train_con, bounds, pending_x)

	Quasi MC-based extended ParEGO (qParEGO) for constrained multi-objective optimization.

The default value of candidates_func in BoTorchSampler
with multi-objective optimization when the number of objectives is larger than three.

See also

qei_candidates_func() for argument and return value
descriptions.

Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

	Parameters:

	
	train_x (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) –

	train_obj (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) –

	train_con (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) –

	bounds (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) –

	pending_x (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) –

	Return type:

	torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

optuna_integration.CatalystPruningCallback

	
class optuna_integration.CatalystPruningCallback(*args, **kwargs)

	Catalyst callback to prune unpromising trials.

This class is an alias to Catalyst’s
OptunaPruningCallback [https://catalyst-team.github.io/catalyst/api/callbacks.html?highlight=optuna#catalyst.callbacks.optuna.OptunaPruningCallback].

See the Catalyst’s documentation for the detailed description.

Warning

Deprecated in v2.7.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v4.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v2.7.0.

optuna_integration.CatBoostPruningCallback

	
class optuna_integration.CatBoostPruningCallback(trial, metric, eval_set_index=None)

	Callback for catboost to prune unpromising trials.

See the example [https://github.com/optuna/optuna-examples/blob/main/catboost/catboost_pruning.py]
if you want to add a pruning callback which observes validation accuracy of
a CatBoost model.

Note

optuna.TrialPruned cannot be raised
in after_iteration()
that is called in CatBoost via CatBoostPruningCallback.
You must call check_pruned()
after training manually unlike other pruning callbacks
to raise optuna.TrialPruned.

Note

This callback cannot be used with CatBoost on GPUs because CatBoost doesn’t support
a user-defined callback for GPU.
Please refer to CatBoost issue [https://github.com/catboost/catboost/issues/1792].

	Parameters:

	
	trial (optuna.trial.Trial) – A Trial corresponding to the current evaluation of the
objective function.

	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – An evaluation metric for pruning, e.g., Logloss and AUC.
Please refer to
CatBoost reference [https://catboost.ai/docs/references/eval-metric__supported-metrics.html]
for further details.

	eval_set_index (int [https://docs.python.org/3/library/functions.html#int] | None) – The index of the target validation dataset.
If you set only one eval_set, eval_set_index is None.
If you set multiple datasets as eval_set, the index of eval_set must be
eval_set_index, e.g., 0 or 1 when eval_set contains two datasets.

Note

Added in v3.0.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Methods

	after_iteration(info)

	Report an evaluation metric value for Optuna pruning after each CatBoost's iteration.

	check_pruned()

	Raise optuna.TrialPruned manually if the CatBoost optimization is pruned.

	
after_iteration(info)

	Report an evaluation metric value for Optuna pruning after each CatBoost’s iteration.

This method is called by CatBoost.

	Parameters:

	info (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – A SimpleNamespace containing iteraion, validation_name, metric_name
and history of losses.
For example SimpleNamespace(iteration=2, metrics={
'learn': {'Logloss': [0.6, 0.5]},
'validation': {'Logloss': [0.7, 0.6], 'AUC': [0.8, 0.9]}
}).

	Returns:

	A boolean value. If False [https://docs.python.org/3/library/constants.html#False], CatBoost internally stops the optimization
with Optuna’s pruning logic without raising optuna.TrialPruned.
Otherwise, the optimization continues.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
check_pruned()

	Raise optuna.TrialPruned manually if the CatBoost optimization is pruned.

	Return type:

	None

optuna_integration.ChainerPruningExtension

	
class optuna_integration.ChainerPruningExtension(trial, observation_key, pruner_trigger)

	Chainer extension to prune unpromising trials.

See the example [https://github.com/optuna/optuna-examples/blob/main/chainer/chainer_integration.py]
if you want to add a pruning extension which observes validation
accuracy of a Chainer Trainer [https://docs.chainer.org/en/stable/reference/generated/chainer.training.Trainer.html].

	Parameters:

	
	trial (optuna.trial.Trial) – A Trial corresponding to the current evaluation of the
objective function.

	observation_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – An evaluation metric for pruning, e.g., main/loss and
validation/main/accuracy. Please refer to
chainer.Reporter reference [https://docs.chainer.org/en/stable/reference/util/generated/chainer.Reporter.html] for further details.

	pruner_trigger (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]] | 'IntervalTrigger' | 'ManualScheduleTrigger') – A trigger to execute pruning. pruner_trigger is an instance of
IntervalTrigger [https://docs.chainer.org/en/stable/reference/generated/chainer.training.triggers.IntervalTrigger.html] or
ManualScheduleTrigger [https://docs.chainer.org/en/stable/reference/generated/chainer.training.triggers.ManualScheduleTrigger.html]. IntervalTrigger [https://docs.chainer.org/en/stable/reference/generated/chainer.training.triggers.IntervalTrigger.html] can be specified by a tuple of the interval length and its
unit like (1, 'epoch').

Warning

Deprecated in v3.5.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v5.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.5.0.

optuna_integration.ChainerMNStudy

	
class optuna_integration.ChainerMNStudy(study, comm)

	A wrapper of Study to incorporate Optuna with ChainerMN.

See also

ChainerMNStudy provides the same interface as
Study. Please refer to optuna.study.Study for further
details.

See the example [https://github.com/optuna/optuna-examples/blob/main/chainer/chainermn_integration.py]
if you want to optimize an objective function that trains neural network
written with ChainerMN.

	Parameters:

	
	study (Study) – A Study object.

	comm (CommunicatorBase) – A ChainerMN communicator [https://docs.chainer.org/en/stable/chainermn/reference/index.html#communicators].

Warning

Deprecated in v3.5.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v5.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.5.0.

Methods

	optimize(func[, n_trials, timeout, catch])

	Optimize an objective function.

	
optimize(func, n_trials=None, timeout=None, catch=())

	Optimize an objective function.

This method provides the same interface as optuna.study.Study.optimize() except
the absence of n_jobs argument.

	Parameters:

	
	func (Callable[['ChainerMNTrial', 'CommunicatorBase'], float [https://docs.python.org/3/library/functions.html#float]]) –

	n_trials (int [https://docs.python.org/3/library/functions.html#int] | None) –

	timeout (float [https://docs.python.org/3/library/functions.html#float] | None) –

	catch (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][type [https://docs.python.org/3/library/functions.html#type][Exception [https://docs.python.org/3/library/exceptions.html#Exception]], ...]) –

	Return type:

	None

optuna_integration.DaskStorage

	
class optuna_integration.DaskStorage(storage=None, name=None, client=None, register=True)

	Dask-compatible storage class.

This storage class wraps a Optuna storage class (e.g. Optuna’s in-memory or sqlite storage)
and is used to run optimization trials in parallel on a Dask cluster.
The underlying Optuna storage object lives on the cluster’s scheduler and any method calls on
the DaskStorage instance results in the same method being called on the underlying
Optuna storage object.

See this example [https://github.com/optuna/optuna-examples/blob/master/dask/dask_simple.py] or the following YouTube video
for how to use DaskStorage to extend Optuna’s in-memory storage class to run across
multiple processes.

 optuna_integration.FastAIV1PruningCallback

optuna_integration.FastAIV1PruningCallback

	
class optuna_integration.FastAIV1PruningCallback(learn, trial, monitor)

	FastAI callback to prune unpromising trials for fastai.

Note

This callback is for fastai<2.0.

See the example [https://github.com/optuna/optuna-examples/blob/main/fastai/fastaiv1_simple.py]
if you want to add a pruning callback which monitors validation loss of a Learner.

Example

Register a pruning callback to learn.fit and learn.fit_one_cycle.

learn.fit(n_epochs, callbacks=[FastAIPruningCallback(learn, trial, "valid_loss")])
learn.fit_one_cycle(
 n_epochs,
 cyc_len,
 max_lr,
 callbacks=[FastAIPruningCallback(learn, trial, "valid_loss")],
)

	Parameters:

	
	learn (Learner) – fastai.basic_train.Learner [https://fastai1.fast.ai/basic_train.html#Learner].

	trial (Trial) – A Trial corresponding to the current
evaluation of the objective function.

	monitor (str [https://docs.python.org/3/library/stdtypes.html#str]) – An evaluation metric for pruning, e.g. valid_loss and Accuracy.
Please refer to fastai.callbacks.TrackerCallback reference [https://fastai1.fast.ai/callbacks.tracker.html#TrackerCallback] for further
details.

Warning

Deprecated in v2.4.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v4.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Methods

	on_epoch_end(epoch, **kwargs)

	

 optuna_integration.FastAIV2PruningCallback

optuna_integration.FastAIV2PruningCallback

	
class optuna_integration.FastAIV2PruningCallback(trial, monitor='valid_loss')

	FastAI callback to prune unpromising trials for fastai.

Note

This callback is for fastai>=2.0.

See the example [https://github.com/optuna/optuna-examples/blob/main/fastai/fastaiv2_simple.py]
if you want to add a pruning callback which monitors validation loss of a Learner.

Example

Register a pruning callback to learn.fit and learn.fit_one_cycle.

learn = cnn_learner(dls, resnet18, metrics=[error_rate])
learn.fit(n_epochs, cbs=[FastAIPruningCallback(trial)]) # Monitor "valid_loss"
learn.fit_one_cycle(
 n_epochs,
 lr_max,
 cbs=[FastAIPruningCallback(trial, monitor="error_rate")], # Monitor "error_rate"
)

	Parameters:

	
	trial (Trial) – A Trial corresponding to the current
evaluation of the objective function.

	monitor (str [https://docs.python.org/3/library/stdtypes.html#str]) – An evaluation metric for pruning, e.g. valid_loss or accuracy.
Please refer to fastai.callback.TrackerCallback reference [https://docs.fast.ai/callback.tracker#TrackerCallback] for further
details.

Methods

	after_epoch()

	

	after_fit()

	

 optuna_integration.FastAIPruningCallback

optuna_integration.FastAIPruningCallback

	
optuna_integration.FastAIPruningCallback

	alias of FastAIV2PruningCallback

 optuna_integration.KerasPruningCallback

optuna_integration.KerasPruningCallback

	
class optuna_integration.KerasPruningCallback(trial, monitor, interval=1)

	Keras callback to prune unpromising trials.

See the example [https://github.com/optuna/optuna-examples/blob/main/keras/keras_integration.py]
if you want to add a pruning callback which observes validation accuracy.

	Parameters:

	
	trial (optuna.trial.Trial) – A Trial corresponding to the current evaluation of the
objective function.

	monitor (str [https://docs.python.org/3/library/stdtypes.html#str]) – An evaluation metric for pruning, e.g., val_loss and
val_accuracy. Please refer to keras.Callback reference [https://keras.io/callbacks/#callback] for further details.

	interval (int [https://docs.python.org/3/library/functions.html#int]) – Check if trial should be pruned every n-th epoch. By default interval=1 and
pruning is performed after every epoch. Increase interval to run several
epochs faster before applying pruning.

Methods

	on_epoch_end(epoch[, logs])

	

 optuna_integration.LightGBMPruningCallback

optuna_integration.LightGBMPruningCallback

	
class optuna_integration.LightGBMPruningCallback(trial, metric, valid_name='valid_0', report_interval=1)

	Callback for LightGBM to prune unpromising trials.

See the example [https://github.com/optuna/optuna-examples/blob/main/lightgbm/lightgbm_integration.py]
if you want to add a pruning callback which observes accuracy
of a LightGBM model.

	Parameters:

	
	trial (optuna.trial.Trial) – A Trial corresponding to the current evaluation of
the objective function.

	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – An evaluation metric for pruning, e.g., binary_error and multi_error.
Please refer to
LightGBM reference [https://lightgbm.readthedocs.io/en/latest/Parameters.html#metric]
for further details.

	valid_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the target validation.
Validation names are specified by valid_names option of
train method [https://lightgbm.readthedocs.io/en/latest/Python-API.html#lightgbm.train].
If omitted, valid_0 is used which is the default name of the first validation.
Note that this argument will be ignored if you are calling
cv method [https://lightgbm.readthedocs.io/en/latest/Python-API.html#lightgbm.cv]
instead of train method.

	report_interval (int [https://docs.python.org/3/library/functions.html#int]) – Check if the trial should report intermediate values for pruning every n-th boosting
iteration. By default report_interval=1 and reporting is performed after every
iteration. Note that the pruning itself is performed according to the interval
definition of the pruner.

 optuna_integration.lightgbm.train

optuna_integration.lightgbm.train

	
optuna_integration.lightgbm.train(params, train_set, num_boost_round=1000, valid_sets=None, valid_names=None, feval=None, feature_name='auto', categorical_feature='auto', keep_training_booster=False, callbacks=None, time_budget=None, sample_size=None, study=None, optuna_callbacks=None, model_dir=None, verbosity=None, show_progress_bar=True, *, optuna_seed=None)

	Wrapper of LightGBM Training API to tune hyperparameters.

It optimizes the following hyperparameters in a stepwise manner:
lambda_l1, lambda_l2, num_leaves, feature_fraction, bagging_fraction,
bagging_freq and min_child_samples.
It is a drop-in replacement for lightgbm.train() [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html]. See
a simple example of LightGBM Tuner [https://github.com/optuna/optuna-examples/tree/main/lightgbm/lightgbm_tuner_simple.py] which optimizes the validation log loss of cancer
detection.

train() is a wrapper function of
LightGBMTuner. To use feature in Optuna such as
suspended/resumed optimization and/or parallelization, refer to
LightGBMTuner instead of this function.

Note

Arguments and keyword arguments for lightgbm.train() [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html] can be passed.
For params, please check the official documentation for LightGBM [https://lightgbm.readthedocs.io/en/latest/Parameters.html].

	Parameters:

	
	time_budget (int [https://docs.python.org/3/library/functions.html#int] | None) – A time budget for parameter tuning in seconds.

	study (Study | None) – A Study instance to store optimization results. The
Trial instances in it has the following user attributes:
elapsed_secs is the elapsed time since the optimization starts.
average_iteration_time is the average time of iteration to train the booster
model in the trial. lgbm_params is a JSON-serialized dictionary of LightGBM
parameters used in the trial.

	optuna_callbacks (list [https://docs.python.org/3/library/stdtypes.html#list][Callable[[Study, FrozenTrial], None]] | None) – List of Optuna callback functions that are invoked at the end of each trial.
Each function must accept two parameters with the following types in this order:
Study and FrozenTrial.
Please note that this is not a callbacks argument of lightgbm.train() [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html] .

	model_dir (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – A directory to save boosters. By default, it is set to None [https://docs.python.org/3/library/constants.html#None] and no boosters are
saved. Please set shared directory (e.g., directories on NFS) if you want to access
get_best_booster() in distributed
environments. Otherwise, it may raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]. If the directory does not
exist, it will be created. The filenames of the boosters will be
{model_dir}/{trial_number}.pkl (e.g., ./boosters/0.pkl).

	verbosity (int [https://docs.python.org/3/library/functions.html#int] | None) – A verbosity level to change Optuna’s logging level. The level is aligned to
LightGBM’s verbosity [https://lightgbm.readthedocs.io/en/latest/Parameters.html#verbosity] .

Warning

Deprecated in v2.0.0. verbosity argument will be removed in the future.
The removal of this feature is currently scheduled for v4.0.0,
but this schedule is subject to change.

Please use set_verbosity() instead.

	show_progress_bar (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to show progress bars or not. To disable progress bar, set this False [https://docs.python.org/3/library/constants.html#False].

Note

Progress bars will be fragmented by logging messages of LightGBM and Optuna.
Please suppress such messages to show the progress bars properly.

	optuna_seed (int [https://docs.python.org/3/library/functions.html#int] | None) – seed of TPESampler for random number generator
that affects sampling for num_leaves, bagging_fraction, bagging_freq,
lambda_l1, and lambda_l2.

Note

The deterministic [https://lightgbm.readthedocs.io/en/latest/Parameters.html#deterministic] parameter of LightGBM makes training reproducible.
Please enable it when you use this argument.

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any]) –

	train_set (lgb.Dataset) –

	num_boost_round (int [https://docs.python.org/3/library/functions.html#int]) –

	valid_sets (list [https://docs.python.org/3/library/stdtypes.html#list]['lgb.Dataset'] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple]['lgb.Dataset', ...] | 'lgb.Dataset' | None) –

	valid_names (Any | None) –

	feval (Callable[..., Any] | None) –

	feature_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	categorical_feature (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	keep_training_booster (bool [https://docs.python.org/3/library/functions.html#bool]) –

	callbacks (list [https://docs.python.org/3/library/stdtypes.html#list][Callable[..., Any]] | None) –

	sample_size (int [https://docs.python.org/3/library/functions.html#int] | None) –

	Return type:

	lgb.Booster

 optuna_integration.lightgbm.LightGBMTuner

optuna_integration.lightgbm.LightGBMTuner

	
class optuna_integration.lightgbm.LightGBMTuner(params, train_set, num_boost_round=1000, valid_sets=None, valid_names=None, feval=None, feature_name='auto', categorical_feature='auto', keep_training_booster=False, callbacks=None, time_budget=None, sample_size=None, study=None, optuna_callbacks=None, model_dir=None, verbosity=None, show_progress_bar=True, *, optuna_seed=None)

	Hyperparameter tuner for LightGBM.

It optimizes the following hyperparameters in a stepwise manner:
lambda_l1, lambda_l2, num_leaves, feature_fraction, bagging_fraction,
bagging_freq and min_child_samples.

You can find the details of the algorithm and benchmark results in this blog article [https://medium.com/optuna/lightgbm-tuner-new-optuna-integration-for-hyperparameter-optimization-8b7095e99258] by Kohei Ozaki [https://www.kaggle.com/confirm], a Kaggle Grandmaster.

Note

Arguments and keyword arguments for lightgbm.train() [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html] can be passed.
For params, please check the official documentation for LightGBM [https://lightgbm.readthedocs.io/en/latest/Parameters.html].

The arguments that only LightGBMTuner has are
listed below:

	Parameters:

	
	time_budget (int [https://docs.python.org/3/library/functions.html#int] | None) – A time budget for parameter tuning in seconds.

	study (optuna.study.Study | None) – A Study instance to store optimization results. The
Trial instances in it has the following user attributes:
elapsed_secs is the elapsed time since the optimization starts.
average_iteration_time is the average time of iteration to train the booster
model in the trial. lgbm_params is a JSON-serialized dictionary of LightGBM
parameters used in the trial.

	optuna_callbacks (list [https://docs.python.org/3/library/stdtypes.html#list][Callable[[Study, FrozenTrial], None]] | None) – List of Optuna callback functions that are invoked at the end of each trial.
Each function must accept two parameters with the following types in this order:
Study and FrozenTrial.
Please note that this is not a callbacks argument of lightgbm.train() [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html] .

	model_dir (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – A directory to save boosters. By default, it is set to None [https://docs.python.org/3/library/constants.html#None] and no boosters are
saved. Please set shared directory (e.g., directories on NFS) if you want to access
get_best_booster() in distributed
environments. Otherwise, it may raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]. If the directory does not
exist, it will be created. The filenames of the boosters will be
{model_dir}/{trial_number}.pkl (e.g., ./boosters/0.pkl).

	verbosity (int [https://docs.python.org/3/library/functions.html#int] | None) – A verbosity level to change Optuna’s logging level. The level is aligned to
LightGBM’s verbosity [https://lightgbm.readthedocs.io/en/latest/Parameters.html#verbosity] .

Warning

Deprecated in v2.0.0. verbosity argument will be removed in the future.
The removal of this feature is currently scheduled for v4.0.0,
but this schedule is subject to change.

Please use set_verbosity() instead.

	show_progress_bar (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to show progress bars or not. To disable progress bar, set this False [https://docs.python.org/3/library/constants.html#False].

Note

Progress bars will be fragmented by logging messages of LightGBM and Optuna.
Please suppress such messages to show the progress bars properly.

	optuna_seed (int [https://docs.python.org/3/library/functions.html#int] | None) – seed of TPESampler for random number generator
that affects sampling for num_leaves, bagging_fraction, bagging_freq,
lambda_l1, and lambda_l2.

Note

The deterministic [https://lightgbm.readthedocs.io/en/latest/Parameters.html#deterministic] parameter of LightGBM makes training reproducible.
Please enable it when you use this argument.

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any]) –

	train_set (lgb.Dataset) –

	num_boost_round (int [https://docs.python.org/3/library/functions.html#int]) –

	valid_sets (list [https://docs.python.org/3/library/stdtypes.html#list]['lgb.Dataset'] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple]['lgb.Dataset', ...] | 'lgb.Dataset' | None) –

	valid_names (Any | None) –

	feval (Callable[..., Any] | None) –

	feature_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	categorical_feature (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	keep_training_booster (bool [https://docs.python.org/3/library/functions.html#bool]) –

	callbacks (list [https://docs.python.org/3/library/stdtypes.html#list][Callable[..., Any]] | None) –

	sample_size (int [https://docs.python.org/3/library/functions.html#int] | None) –

Methods

	compare_validation_metrics(val_score, best_score)

	

	get_best_booster()

	Return the best booster.

	higher_is_better()

	

	run()

	Perform the hyperparameter-tuning with given parameters.

	sample_train_set()

	Make subset of self.train_set Dataset object.

	tune_bagging([n_trials])

	

	tune_feature_fraction([n_trials])

	

	tune_feature_fraction_stage2([n_trials])

	

	tune_min_data_in_leaf()

	

	tune_num_leaves([n_trials])

	

	tune_regularization_factors([n_trials])

	

Attributes

	best_params

	Return parameters of the best booster.

	best_score

	Return the score of the best booster.

	
property best_params: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Return parameters of the best booster.

	
property best_score: float [https://docs.python.org/3/library/functions.html#float]

	Return the score of the best booster.

	
get_best_booster()

	Return the best booster.

If the best booster cannot be found, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] will be raised. To prevent the
errors, please save boosters by specifying the model_dir argument of
__init__(),
when you resume tuning or you run tuning in parallel.

	Return type:

	lgb.Booster

	
run()

	Perform the hyperparameter-tuning with given parameters.

	Return type:

	None

	
sample_train_set()

	Make subset of self.train_set Dataset object.

	Return type:

	None

 optuna_integration.lightgbm.LightGBMTunerCV

optuna_integration.lightgbm.LightGBMTunerCV

	
class optuna_integration.lightgbm.LightGBMTunerCV(params, train_set, num_boost_round=1000, folds=None, nfold=5, stratified=True, shuffle=True, feval=None, feature_name='auto', categorical_feature='auto', fpreproc=None, seed=0, callbacks=None, time_budget=None, sample_size=None, study=None, optuna_callbacks=None, verbosity=None, show_progress_bar=True, model_dir=None, return_cvbooster=False, *, optuna_seed=None)

	Hyperparameter tuner for LightGBM with cross-validation.

It employs the same stepwise approach as
LightGBMTuner.
LightGBMTunerCV invokes lightgbm.cv() [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.cv.html] to train
and validate boosters while LightGBMTuner invokes
lightgbm.train() [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html]. See
a simple example [https://github.com/optuna/optuna-examples/tree/main/lightgbm/lightgbm_tuner_cv.py] which optimizes the validation log loss of cancer detection.

Note

Arguments and keyword arguments for lightgbm.cv() [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.cv.html] can be passed except
metrics, init_model and eval_train_metric.
For params, please check the official documentation for LightGBM [https://lightgbm.readthedocs.io/en/latest/Parameters.html].

The arguments that only LightGBMTunerCV has are
listed below:

	Parameters:

	
	time_budget (int [https://docs.python.org/3/library/functions.html#int] | None) – A time budget for parameter tuning in seconds.

	study (optuna.study.Study | None) – A Study instance to store optimization results. The
Trial instances in it has the following user attributes:
elapsed_secs is the elapsed time since the optimization starts.
average_iteration_time is the average time of iteration to train the booster
model in the trial. lgbm_params is a JSON-serialized dictionary of LightGBM
parameters used in the trial.

	optuna_callbacks (list [https://docs.python.org/3/library/stdtypes.html#list][Callable[[Study, FrozenTrial], None]] | None) – List of Optuna callback functions that are invoked at the end of each trial.
Each function must accept two parameters with the following types in this order:
Study and FrozenTrial.
Please note that this is not a callbacks argument of lightgbm.train() [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html] .

	model_dir (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – A directory to save boosters. By default, it is set to None [https://docs.python.org/3/library/constants.html#None] and no boosters are
saved. Please set shared directory (e.g., directories on NFS) if you want to access
get_best_booster()
in distributed environments.
Otherwise, it may raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]. If the directory does not exist, it will be
created. The filenames of the boosters will be {model_dir}/{trial_number}.pkl
(e.g., ./boosters/0.pkl).

	verbosity (int [https://docs.python.org/3/library/functions.html#int] | None) – A verbosity level to change Optuna’s logging level. The level is aligned to
LightGBM’s verbosity [https://lightgbm.readthedocs.io/en/latest/Parameters.html#verbosity] .

Warning

Deprecated in v2.0.0. verbosity argument will be removed in the future.
The removal of this feature is currently scheduled for v4.0.0,
but this schedule is subject to change.

Please use set_verbosity() instead.

	show_progress_bar (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to show progress bars or not. To disable progress bar, set this False [https://docs.python.org/3/library/constants.html#False].

Note

Progress bars will be fragmented by logging messages of LightGBM and Optuna.
Please suppress such messages to show the progress bars properly.

	return_cvbooster (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to enable get_best_booster().

	optuna_seed (int [https://docs.python.org/3/library/functions.html#int] | None) – seed of TPESampler for random number generator
that affects sampling for num_leaves, bagging_fraction, bagging_freq,
lambda_l1, and lambda_l2.

Note

The deterministic [https://lightgbm.readthedocs.io/en/latest/Parameters.html#deterministic] parameter of LightGBM makes training reproducible.
Please enable it when you use this argument.

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any]) –

	train_set (lgb.Dataset) –

	num_boost_round (int [https://docs.python.org/3/library/functions.html#int]) –

	folds (Generator[tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], None, None] | Iterator[tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]] | 'BaseCrossValidator' | None) –

	nfold (int [https://docs.python.org/3/library/functions.html#int]) –

	stratified (bool [https://docs.python.org/3/library/functions.html#bool]) –

	shuffle (bool [https://docs.python.org/3/library/functions.html#bool]) –

	feval (Callable[..., Any] | None) –

	feature_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	categorical_feature (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	fpreproc (Callable[..., Any] | None) –

	seed (int [https://docs.python.org/3/library/functions.html#int]) –

	callbacks (list [https://docs.python.org/3/library/stdtypes.html#list][Callable[..., Any]] | None) –

	sample_size (int [https://docs.python.org/3/library/functions.html#int] | None) –

Methods

	compare_validation_metrics(val_score, best_score)

	

	get_best_booster()

	Return the best cvbooster.

	higher_is_better()

	

	run()

	Perform the hyperparameter-tuning with given parameters.

	sample_train_set()

	Make subset of self.train_set Dataset object.

	tune_bagging([n_trials])

	

	tune_feature_fraction([n_trials])

	

	tune_feature_fraction_stage2([n_trials])

	

	tune_min_data_in_leaf()

	

	tune_num_leaves([n_trials])

	

	tune_regularization_factors([n_trials])

	

Attributes

	best_params

	Return parameters of the best booster.

	best_score

	Return the score of the best booster.

	
property best_params: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Return parameters of the best booster.

	
property best_score: float [https://docs.python.org/3/library/functions.html#float]

	Return the score of the best booster.

	
get_best_booster()

	Return the best cvbooster.

If the best booster cannot be found, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] will be raised.
To prevent the errors, please save boosters by specifying
both of the model_dir and the return_cvbooster arguments of
__init__(),
when you resume tuning or you run tuning in parallel.

	Return type:

	lgb.CVBooster

	
run()

	Perform the hyperparameter-tuning with given parameters.

	Return type:

	None

	
sample_train_set()

	Make subset of self.train_set Dataset object.

	Return type:

	None

 optuna_integration.MLflowCallback

optuna_integration.MLflowCallback

	
class optuna_integration.MLflowCallback(tracking_uri=None, metric_name='value', create_experiment=True, mlflow_kwargs=None, tag_study_user_attrs=False, tag_trial_user_attrs=True)

	Callback to track Optuna trials with MLflow.

This callback adds relevant information that is
tracked by Optuna to MLflow.

Example

Add MLflow callback to Optuna optimization.

import optuna
from optuna_integration.mlflow import MLflowCallback

def objective(trial):
 x = trial.suggest_float("x", -10, 10)
 return (x - 2) ** 2

mlflc = MLflowCallback(
 tracking_uri=YOUR_TRACKING_URI,
 metric_name="my metric score",
)

study = optuna.create_study(study_name="my_study")
study.optimize(objective, n_trials=10, callbacks=[mlflc])

	Parameters:

	
	tracking_uri (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – The URI of the MLflow tracking server.

Please refer to mlflow.set_tracking_uri [https://www.mlflow.org/docs/latest/python_api/mlflow.html#mlflow.set_tracking_uri]
for more details.

	metric_name (str [https://docs.python.org/3/library/stdtypes.html#str] | Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Name assigned to optimized metric. In case of multi-objective optimization,
list of names can be passed. Those names will be assigned
to metrics in the order returned by objective function.
If single name is provided, or this argument is left to default value,
it will be broadcasted to each objective with a number suffix in order
returned by objective function e.g. two objectives and default metric name
will be logged as value_0 and value_1. The number of metrics must be
the same as the number of values an objective function returns.

	create_experiment (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], new MLflow experiment will be created for each optimization run,
named after the Optuna study. Setting this argument to False [https://docs.python.org/3/library/constants.html#False] lets user run
optimization under existing experiment, set via mlflow.set_experiment [https://www.mlflow.org/docs/latest/python_api/mlflow.html#mlflow.get_tracking_uri],
by passing experiment_id as one of mlflow_kwargs or under default MLflow
experiment, when no additional arguments are passed. Note that this argument
must be set to False [https://docs.python.org/3/library/constants.html#False] when using Optuna with this callback within
Databricks Notebook.

	mlflow_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any] | None) – Set of arguments passed when initializing MLflow run.
Please refer to MLflow API documentation [https://www.mlflow.org/docs/latest/python_api/mlflow.html#mlflow.start_run]
for more details.

Note

nest_trials argument added in v2.3.0 is a part of mlflow_kwargs
since v3.0.0. Anyone using nest_trials=True should migrate to
mlflow_kwargs={"nested": True} to avoid raising TypeError [https://docs.python.org/3/library/exceptions.html#TypeError].

	tag_study_user_attrs (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag indicating whether or not to add the study’s user attrs
to the mlflow trial as tags. Please note that when this flag is
set, key value pairs in user_attrs
will supersede existing tags.

	tag_trial_user_attrs (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag indicating whether or not to add the trial’s user attrs
to the mlflow trial as tags. Please note that when both trial and
study user attributes are logged, the latter will supersede the former
in case of a collision.

Note

Added in v1.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v1.4.0.

Methods

	track_in_mlflow()

	Decorator for using MLflow logging in the objective function.

	
track_in_mlflow()

	Decorator for using MLflow logging in the objective function.

This decorator enables the extension of MLflow logging provided by the callback.

All information logged in the decorated objective function will be added to the MLflow
run for the trial created by the callback.

Example

Add additional logging to MLflow.

import optuna
import mlflow
from optuna_integration.mlflow import MLflowCallback

mlflc = MLflowCallback(
 tracking_uri=YOUR_TRACKING_URI,
 metric_name="my metric score",
)

@mlflc.track_in_mlflow()
def objective(trial):
 x = trial.suggest_float("x", -10, 10)
 mlflow.log_param("power", 2)
 mlflow.log_metric("base of metric", x - 2)

 return (x - 2) ** 2

study = optuna.create_study(study_name="my_other_study")
study.optimize(objective, n_trials=10, callbacks=[mlflc])

	Returns:

	Objective function with tracking to MLflow enabled.

	Return type:

	Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable]

Note

Added in v2.9.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.9.0.

 optuna_integration.MXNetPruningCallback

optuna_integration.MXNetPruningCallback

	
class optuna_integration.MXNetPruningCallback(trial, eval_metric)

	MXNet callback to prune unpromising trials.

See the example [https://github.com/optuna/optuna-examples/blob/main/mxnet/mxnet_integration.py]
if you want to add a pruning callback which observes accuracy.

	Parameters:

	
	trial (Trial) – A Trial corresponding to the current evaluation of the
objective function.

	eval_metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – An evaluation metric name for pruning, e.g., cross-entropy and
accuracy. If using default metrics like mxnet.metrics.Accuracy, use it’s
default metric name. For custom metrics, use the metric_name provided to
constructor. Please refer to mxnet.metrics reference [https://mxnet.apache.org/api/python/metric/metric.html] for further details.

 optuna_integration.CmaEsSampler

optuna_integration.CmaEsSampler

	
class optuna_integration.CmaEsSampler(x0=None, sigma0=None, cma_stds=None, seed=None, cma_opts=None, n_startup_trials=1, independent_sampler=None, warn_independent_sampling=True)

	Wrapper class of PyCmaSampler for backward compatibility.

Warning

Deprecated in v2.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v4.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v2.0.0.

This class is renamed to PyCmaSampler.

Methods

	after_trial(study, trial, state, values)

	Trial post-processing.

	before_trial(study, trial)

	Trial pre-processing.

	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

	reseed_rng()

	Reseed sampler's random number generator.

	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.

	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

	Parameters:

	
	x0 (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None) –

	sigma0 (float [https://docs.python.org/3/library/functions.html#float] | None) –

	cma_stds (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]] | None) –

	seed (int [https://docs.python.org/3/library/functions.html#int] | None) –

	cma_opts (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None) –

	n_startup_trials (int [https://docs.python.org/3/library/functions.html#int]) –

	independent_sampler (BaseSampler | None) –

	warn_independent_sampling (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.

Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	state (TrialState) – Resulting trial state.

	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.

	Return type:

	None

	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.

Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.

	Return type:

	None

	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	Returns:

	A dictionary containing the parameter names and parameter’s distributions.

	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]

See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().

	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.

	Return type:

	None

	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.

Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.

	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.

	Returns:

	A parameter value.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.

Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	search_space (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().

	Returns:

	A dictionary containing the parameter names and the values.

	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]]

 optuna_integration.PyCmaSampler

optuna_integration.PyCmaSampler

	
class optuna_integration.PyCmaSampler(x0=None, sigma0=None, cma_stds=None, seed=None, cma_opts=None, n_startup_trials=1, independent_sampler=None, warn_independent_sampling=True)

	A Sampler using cma library as the backend.

Example

Optimize a simple quadratic function by using PyCmaSampler.

import optuna
import optuna_integration

def objective(trial):
 x = trial.suggest_float("x", -1, 1)
 y = trial.suggest_int("y", -1, 1)
 return x**2 + y

sampler = optuna_integration.PyCmaSampler()
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=20)

Note that parallel execution of trials may affect the optimization performance of CMA-ES,
especially if the number of trials running in parallel exceeds the population size.

Note

CmaEsSampler is deprecated and renamed to
PyCmaSampler in v2.0.0. Please use
PyCmaSampler instead of
CmaEsSampler.

	Parameters:

	
	x0 (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None) – A dictionary of an initial parameter values for CMA-ES. By default, the mean of low
and high for each distribution is used.
Please refer to cma.CMAEvolutionStrategy [https://cma-es.github.io/apidocs-pycma/cma.evolution_strategy.CMAEvolutionStrategy.html] for further details of x0.

	sigma0 (float [https://docs.python.org/3/library/functions.html#float] | None) – Initial standard deviation of CMA-ES. By default, sigma0 is set to
min_range / 6, where min_range denotes the minimum range of the distributions
in the search space. If distribution is categorical, min_range is
len(choices) - 1.
Please refer to cma.CMAEvolutionStrategy [https://cma-es.github.io/apidocs-pycma/cma.evolution_strategy.CMAEvolutionStrategy.html] for further details of sigma0.

	cma_stds (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]] | None) – A dictionary of multipliers of sigma0 for each parameters. The default value is 1.0.
Please refer to cma.CMAEvolutionStrategy [https://cma-es.github.io/apidocs-pycma/cma.evolution_strategy.CMAEvolutionStrategy.html] for further details of cma_stds.

	seed (int [https://docs.python.org/3/library/functions.html#int] | None) – A random seed for CMA-ES.

	cma_opts (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None) – Options passed to the constructor of cma.CMAEvolutionStrategy [https://cma-es.github.io/apidocs-pycma/cma.evolution_strategy.CMAEvolutionStrategy.html] class.

Note that default option is cma_default_options [https://cma-es.github.io/apidocs-pycma/cma.evolution_strategy.html#cma_default_options_],
but BoundaryHandler, bounds, CMA_stds and seed arguments in
cma_opts will be ignored because it is added by
PyCmaSampler automatically.

	n_startup_trials (int [https://docs.python.org/3/library/functions.html#int]) – The independent sampling is used instead of the CMA-ES algorithm until the given number
of trials finish in the same study.

	independent_sampler (BaseSampler | None) – A BaseSampler instance that is used for independent
sampling. The parameters not contained in the relative search space are sampled
by this sampler.
The search space for PyCmaSampler is determined by
intersection_search_space().

If None [https://docs.python.org/3/library/constants.html#None] is specified, RandomSampler is used
as the default.

See also

optuna.samplers module provides built-in independent samplers
such as RandomSampler and
TPESampler.

	warn_independent_sampling (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True [https://docs.python.org/3/library/constants.html#True], a warning message is emitted when
the value of a parameter is sampled by using an independent sampler.

Note that the parameters of the first trial in a study are always sampled
via an independent sampler, so no warning messages are emitted in this case.

Methods

	after_trial(study, trial, state, values)

	Trial post-processing.

	before_trial(study, trial)

	Trial pre-processing.

	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

	reseed_rng()

	Reseed sampler's random number generator.

	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.

	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.

Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	state (TrialState) – Resulting trial state.

	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.

	Return type:

	None

	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.

Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.

	Return type:

	None

	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	Returns:

	A dictionary containing the parameter names and parameter’s distributions.

	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]

See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().

	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.

	Return type:

	None

	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.

Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.

	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.

	Returns:

	A parameter value.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.

Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	search_space (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().

	Returns:

	A dictionary containing the parameter names and the values.

	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]]

 optuna_integration.PyTorchIgnitePruningHandler

optuna_integration.PyTorchIgnitePruningHandler

	
class optuna_integration.PyTorchIgnitePruningHandler(trial, metric, trainer)

	PyTorch Ignite handler to prune unpromising trials.

See the example [https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_ignite_simple.py]
if you want to add a pruning handler which observes validation accuracy.

	Parameters:

	
	trial (Trial) – A Trial corresponding to the current evaluation of the
objective function.

	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name of metric for pruning, e.g., accuracy and loss.

	trainer (Engine) – A trainer engine of PyTorch Ignite. Please refer to ignite.engine.Engine reference [https://pytorch.org/ignite/engine.html#ignite.engine.Engine] for further details.

 optuna_integration.PyTorchLightningPruningCallback

optuna_integration.PyTorchLightningPruningCallback

	
class optuna_integration.PyTorchLightningPruningCallback(trial, monitor)

	PyTorch Lightning callback to prune unpromising trials.

See the example [https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_lightning_simple.py]
if you want to add a pruning callback which observes accuracy.

	Parameters:

	
	trial (Trial) – A Trial corresponding to the current evaluation of the
objective function.

	monitor (str [https://docs.python.org/3/library/stdtypes.html#str]) – An evaluation metric for pruning, e.g., val_loss or
val_acc. The metrics are obtained from the returned dictionaries from e.g.
lightning.pytorch.LightningModule.training_step or
lightning.pytorch.LightningModule.validation_epoch_end and the names thus depend on
how this dictionary is formatted.

Note

For the distributed data parallel training, the version of PyTorchLightning needs to be
higher than or equal to v1.6.0. In addition, Study should be
instantiated with RDB storage.

Note

If you would like to use PyTorchLightningPruningCallback in a distributed training
environment, you need to evoke PyTorchLightningPruningCallback.check_pruned()
manually so that TrialPruned is properly handled.

Methods

	check_pruned()

	Raise optuna.TrialPruned manually if pruned.

	on_fit_start(trainer, pl_module)

	

	on_validation_end(trainer, pl_module)

	

	
check_pruned()

	Raise optuna.TrialPruned manually if pruned.

Currently, intermediate_values are not properly propagated between processes due to
storage cache. Therefore, necessary information is kept in trial_system_attrs when the
trial runs in a distributed situation. Please call this method right after calling
lightning.pytorch.Trainer.fit().
If a callback doesn’t have any backend storage for DDP, this method does nothing.

	Return type:

	None

 optuna_integration.TorchDistributedTrial

optuna_integration.TorchDistributedTrial

	
class optuna_integration.TorchDistributedTrial(trial, group=None)

	A wrapper of Trial to incorporate Optuna with PyTorch distributed.

See also

TorchDistributedTrial provides the same interface as
Trial. Please refer to optuna.trial.Trial for further
details.

See the example [https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_distributed_simple.py]
if you want to optimize an objective function that trains neural network
written with PyTorch distributed data parallel.

	Parameters:

	
	trial (optuna.trial.BaseTrial | None) – A Trial object or None [https://docs.python.org/3/library/constants.html#None]. Please set trial object in
rank-0 node and set None [https://docs.python.org/3/library/constants.html#None] in the other rank node.

	group ('ProcessGroup' | None) – A torch.distributed.ProcessGroup to communicate with the other nodes.
TorchDistributedTrial use CPU tensors to communicate, make sure the group
supports CPU tensors communications.

Use gloo backend when group is None.
Create a global gloo backend when group is None and WORLD is nccl.

Note

The methods of TorchDistributedTrial are expected to be
called by all workers at once. They invoke synchronous data transmission to share
processing results and synchronize timing.

Note

Added in v2.6.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.6.0.

Methods

	report(value, step)

	

	set_system_attr(key, value)

	

	set_user_attr(key, value)

	

	should_prune()

	

	suggest_categorical()

	

	suggest_discrete_uniform(name, low, high, q)

	

	suggest_float(name, low, high, *[, step, log])

	

	suggest_int(name, low, high[, step, log])

	

	suggest_loguniform(name, low, high)

	

	suggest_uniform(name, low, high)

	

Attributes

	datetime_start

	

	distributions

	

	number

	

	params

	

	system_attrs

	

	user_attrs

	

	
set_system_attr(key, value)

	
Warning

Deprecated in v3.1.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v5.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.1.0.

	Parameters:

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) –

	Return type:

	None

	
suggest_discrete_uniform(name, low, high, q)

	
Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use suggest_float(…, step=…) instead.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	low (float [https://docs.python.org/3/library/functions.html#float]) –

	high (float [https://docs.python.org/3/library/functions.html#float]) –

	q (float [https://docs.python.org/3/library/functions.html#float]) –

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
suggest_loguniform(name, low, high)

	
Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use suggest_float(…, log=True) instead.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	low (float [https://docs.python.org/3/library/functions.html#float]) –

	high (float [https://docs.python.org/3/library/functions.html#float]) –

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
suggest_uniform(name, low, high)

	
Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use suggest_float instead.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	low (float [https://docs.python.org/3/library/functions.html#float]) –

	high (float [https://docs.python.org/3/library/functions.html#float]) –

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
property system_attrs: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
Warning

Deprecated in v3.1.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v5.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.1.0.

 optuna_integration.SkoptSampler

optuna_integration.SkoptSampler

	
class optuna_integration.SkoptSampler(independent_sampler=None, warn_independent_sampling=True, skopt_kwargs=None, n_startup_trials=1, *, consider_pruned_trials=False, seed=None)

	Sampler using Scikit-Optimize as the backend.

The use of SkoptSampler is highly not recommended, as the
development of Scikit-Optimize has been inactive and we have identified compatibility
issues with newer NumPy versions.

	Parameters:

	
	independent_sampler (BaseSampler | None) – A BaseSampler instance that is used for independent
sampling. The parameters not contained in the relative search space are sampled
by this sampler.
The search space for SkoptSampler is determined by
intersection_search_space().

If None [https://docs.python.org/3/library/constants.html#None] is specified, RandomSampler is used
as the default.

See also

optuna.samplers module provides built-in independent samplers
such as RandomSampler and
TPESampler.

	warn_independent_sampling (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True [https://docs.python.org/3/library/constants.html#True], a warning message is emitted when
the value of a parameter is sampled by using an independent sampler.

Note that the parameters of the first trial in a study are always sampled
via an independent sampler, so no warning messages are emitted in this case.

	skopt_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any] | None) – Keyword arguments passed to the constructor of
skopt.Optimizer [https://scikit-optimize.github.io/#skopt.Optimizer]
class.

Note that dimensions argument in skopt_kwargs will be ignored
because it is added by SkoptSampler automatically.

	n_startup_trials (int [https://docs.python.org/3/library/functions.html#int]) – The independent sampling is used until the given number of trials finish in the
same study.

	consider_pruned_trials (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True [https://docs.python.org/3/library/constants.html#True], the PRUNED trials are considered for sampling.

Note

Added in v2.0.0 as an experimental feature. The interface may change in newer
versions without prior notice. See
https://github.com/optuna/optuna/releases/tag/v2.0.0.

Note

As the number of trials \(n\) increases, each sampling takes longer and longer
on a scale of \(O(n^3)\). And, if this is True [https://docs.python.org/3/library/constants.html#True], the number of trials
will increase. So, it is suggested to set this flag False [https://docs.python.org/3/library/constants.html#False] when each
evaluation of the objective function is relatively faster than each sampling. On
the other hand, it is suggested to set this flag True [https://docs.python.org/3/library/constants.html#True] when each evaluation
of the objective function is relatively slower than each sampling.

	seed (int [https://docs.python.org/3/library/functions.html#int] | None) – Seed for random number generator.

Warning

Deprecated in v3.4.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v4.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.4.0.

Methods

	after_trial(study, trial, state, values)

	Trial post-processing.

	before_trial(study, trial)

	Trial pre-processing.

	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

	reseed_rng()

	Reseed sampler's random number generator.

	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.

	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.

Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	state (TrialState) – Resulting trial state.

	values (Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.

	Return type:

	None

	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.

Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.

	Return type:

	None

	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	Returns:

	A dictionary containing the parameter names and parameter’s distributions.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]

See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().

	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.

	Return type:

	None

	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.

Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.

	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.

	Returns:

	A parameter value.

	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.

Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	search_space (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().

	Returns:

	A dictionary containing the parameter names and the values.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

 optuna_integration.ShapleyImportanceEvaluator

optuna_integration.ShapleyImportanceEvaluator

	
class optuna_integration.ShapleyImportanceEvaluator(*, n_trees=64, max_depth=64, seed=None)

	Shapley (SHAP) parameter importance evaluator.

This evaluator fits a random forest regression model that predicts the objective values
of COMPLETE trials given their parameter configurations.
Feature importances are then computed as the mean absolute SHAP values.

Note

This evaluator requires the sklearn [https://scikit-learn.org/stable/] Python package
and SHAP [https://shap.readthedocs.io/en/stable/index.html].
The model for the SHAP calculation is based on sklearn.ensemble.RandomForestClassifier [https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html].

	Parameters:

	
	n_trees (int [https://docs.python.org/3/library/functions.html#int]) – Number of trees in the random forest.

	max_depth (int [https://docs.python.org/3/library/functions.html#int]) – The maximum depth of each tree in the random forest.

	seed (int [https://docs.python.org/3/library/functions.html#int] | None) – Seed for the random forest.

Note

Added in v3.0.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Methods

	evaluate(study[, params, target])

	Evaluate parameter importances based on completed trials in the given study.

	
evaluate(study, params=None, *, target=None)

	Evaluate parameter importances based on completed trials in the given study.

Note

This method is not meant to be called by library users.

See also

Please refer to get_param_importances() for how a concrete
evaluator should implement this method.

	Parameters:

	
	study (Study) – An optimized study.

	params (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) – A list of names of parameters to assess.
If None [https://docs.python.org/3/library/constants.html#None], all parameters that are present in all of the completed trials are
assessed.

	target (Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[FrozenTrial], float [https://docs.python.org/3/library/functions.html#float]] | None) – A function to specify the value to evaluate importances.
If it is None [https://docs.python.org/3/library/constants.html#None] and study is being used for single-objective optimization,
the objective values are used. Can also be used for other trial attributes, such as
the duration, like target=lambda t: t.duration.total_seconds().

Note

Specify this argument if study is being used for multi-objective
optimization. For example, to get the hyperparameter importance of the first
objective, use target=lambda t: t.values[0] for the target parameter.

	Returns:

	A dict [https://docs.python.org/3/library/stdtypes.html#dict] where the keys are parameter names and the values are assessed
importances.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]]

 optuna_integration.OptunaSearchCV

optuna_integration.OptunaSearchCV

	
class optuna_integration.OptunaSearchCV(estimator, param_distributions, *, cv=None, enable_pruning=False, error_score=nan, max_iter=1000, n_jobs=None, n_trials=10, random_state=None, refit=True, return_train_score=False, scoring=None, study=None, subsample=1.0, timeout=None, verbose=0, callbacks=None)

	Hyperparameter search with cross-validation.

	Parameters:

	
	estimator (sklearn.base.BaseEstimator [https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator]) – Object to use to fit the data. This is assumed to implement the
scikit-learn estimator interface. Either this needs to provide
score, or scoring must be passed.

	param_distributions (Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], distributions.BaseDistribution]) – Dictionary where keys are parameters and values are distributions.
Distributions are assumed to implement the optuna distribution
interface.

	cv (int [https://docs.python.org/3/library/functions.html#int] | 'BaseCrossValidator' | Iterable | None) – Cross-validation strategy. Possible inputs for cv are:

	None [https://docs.python.org/3/library/constants.html#None], to use the default 5-fold cross validation,

	integer to specify the number of folds in a CV splitter,

	CV splitter [https://scikit-learn.org/stable/glossary.html#term-CV-splitter],

	an iterable yielding (train, validation) splits as arrays of indices.

For integer, if estimator is a classifier and y is
either binary or multiclass,
sklearn.model_selection.StratifiedKFold is used. otherwise,
sklearn.model_selection.KFold is used.

	enable_pruning (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], pruning is performed in the case where the
underlying estimator supports partial_fit.

	error_score (Number | float [https://docs.python.org/3/library/functions.html#float] | str [https://docs.python.org/3/library/stdtypes.html#str]) – Value to assign to the score if an error occurs in fitting. If
‘raise’, the error is raised. If numeric,
sklearn.exceptions.FitFailedWarning is raised. This does not
affect the refit step, which will always raise the error.

	max_iter (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of epochs. This is only used if the underlying
estimator supports partial_fit.

	n_jobs (int [https://docs.python.org/3/library/functions.html#int] | None) – Number of threading [https://docs.python.org/3/library/threading.html#module-threading] based parallel jobs. None [https://docs.python.org/3/library/constants.html#None] means 1.
-1 means using the number is set to CPU count.

Note

n_jobs allows parallelization using threading [https://docs.python.org/3/library/threading.html#module-threading] and may suffer from
Python’s GIL [https://wiki.python.org/moin/GlobalInterpreterLock].
It is recommended to use process-based optimization [https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/004_distributed.html#distributed]
if func is CPU bound.

	n_trials (int [https://docs.python.org/3/library/functions.html#int] | None) – Number of trials. If None [https://docs.python.org/3/library/constants.html#None], there is no limitation on the
number of trials. If timeout is also set to None [https://docs.python.org/3/library/constants.html#None],
the study continues to create trials until it receives a
termination signal such as Ctrl+C or SIGTERM. This trades off
runtime vs quality of the solution.

	random_state (int [https://docs.python.org/3/library/functions.html#int] | np.random.RandomState | None) – Seed of the pseudo random number generator. If int, this is the
seed used by the random number generator. If
numpy.random.RandomState object, this is the random number
generator. If None [https://docs.python.org/3/library/constants.html#None], the global random state from
numpy.random is used.

	refit (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], refit the estimator with the best found
hyperparameters. The refitted estimator is made available at the
best_estimator_ attribute and permits using predict
directly.

	return_train_score (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], training scores will be included. Computing
training scores is used to get insights on how different
hyperparameter settings impact the overfitting/underfitting
trade-off. However computing training scores can be
computationally expensive and is not strictly required to select
the hyperparameters that yield the best generalization
performance.

	scoring (Callable[..., float [https://docs.python.org/3/library/functions.html#float]] | str [https://docs.python.org/3/library/stdtypes.html#str] | None) – String or callable to evaluate the predictions on the validation data.
If None [https://docs.python.org/3/library/constants.html#None], score on the estimator is used.

	study (study_module.Study | None) – Study corresponds to the optimization task. If None [https://docs.python.org/3/library/constants.html#None], a new
study is created.

	subsample (float [https://docs.python.org/3/library/functions.html#float] | int [https://docs.python.org/3/library/functions.html#int]) – Proportion of samples that are used during hyperparameter search.

	If int, then draw subsample samples.

	If float, then draw subsample * X.shape[0] samples.

	timeout (float [https://docs.python.org/3/library/functions.html#float] | None) – Time limit in seconds for the search of appropriate models. If
None [https://docs.python.org/3/library/constants.html#None], the study is executed without time limitation. If
n_trials is also set to None [https://docs.python.org/3/library/constants.html#None], the study continues to
create trials until it receives a termination signal such as
Ctrl+C or SIGTERM. This trades off runtime vs quality of the
solution.

	verbose (int [https://docs.python.org/3/library/functions.html#int]) – Verbosity level. The higher, the more messages.

	callbacks (list [https://docs.python.org/3/library/stdtypes.html#list][Callable[[study_module.Study, FrozenTrial], None]] | None) – List of callback functions that are invoked at the end of each trial. Each function
must accept two parameters with the following types in this order:
Study and FrozenTrial.

See also

See the tutorial of Callback for Study.optimize [https://optuna.readthedocs.io/en/stable/tutorial/20_recipes/007_optuna_callback.html#optuna-callback]
for how to use and implement callback functions.

	
best_estimator_

	Estimator that was chosen by the search. This is present only if
refit is set to True [https://docs.python.org/3/library/constants.html#True].

	
n_splits_

	Number of cross-validation splits.

	
refit_time_

	Time for refitting the best estimator. This is present only if
refit is set to True [https://docs.python.org/3/library/constants.html#True].

	
sample_indices_

	Indices of samples that are used during hyperparameter search.

	
scorer_

	Scorer function.

	
study_

	Actual study.

Examples

import optuna
import optuna_integration

from sklearn.datasets import load_iris
from sklearn.svm import SVC

clf = SVC(gamma="auto")
param_distributions = {
 "C": optuna.distributions.FloatDistribution(1e-10, 1e10, log=True)
}
optuna_search = optuna_integration.OptunaSearchCV(clf, param_distributions)
X, y = load_iris(return_X_y=True)
optuna_search.fit(X, y)
y_pred = optuna_search.predict(X)

Note

By following the scikit-learn convention for scorers, the direction of optimization is
maximize. See https://scikit-learn.org/stable/modules/model_evaluation.html.
For the minimization problem, please multiply -1.

Note

Added in v0.17.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v0.17.0.

Methods

	fit(X[, y, groups])

	Run fit with all sets of parameters.

	get_metadata_routing()

	Get metadata routing of this object.

	get_params([deep])

	Get parameters for this estimator.

	score(X[, y])

	Return the score on the given data.

	set_fit_request(*[, groups])

	Request metadata passed to the fit method.

	set_params(**params)

	Set the parameters of this estimator.

Attributes

	best_index_

	Trial number which corresponds to the best candidate parameter setting.

	best_params_

	Parameters of the best trial in the Study.

	best_score_

	Mean cross-validated score of the best estimator.

	best_trial_

	Best trial in the Study.

	classes_

	Class labels.

	cv_results_

	A dictionary mapping a metric name to a list of Cross-Validation results of all trials.

	decision_function

	Call decision_function on the best estimator.

	inverse_transform

	Call inverse_transform on the best estimator.

	n_trials_

	Actual number of trials.

	predict

	Call predict on the best estimator.

	predict_log_proba

	Call predict_log_proba on the best estimator.

	predict_proba

	Call predict_proba on the best estimator.

	score_samples

	Call score_samples on the best estimator.

	set_user_attr

	Call set_user_attr on the Study.

	transform

	Call transform on the best estimator.

	trials_

	All trials in the Study.

	trials_dataframe

	Call trials_dataframe on the Study.

	user_attrs_

	User attributes in the Study.

	
property best_index_: int [https://docs.python.org/3/library/functions.html#int]

	Trial number which corresponds to the best candidate parameter setting.

Returned value is equivalent to optuna_search.best_trial_.number.

	
property best_params_: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Parameters of the best trial in the Study.

	
property best_score_: float [https://docs.python.org/3/library/functions.html#float]

	Mean cross-validated score of the best estimator.

	
property best_trial_: FrozenTrial

	Best trial in the Study.

	
property classes_: List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | Series [https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series]

	Class labels.

	
property cv_results_: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	A dictionary mapping a metric name to a list of Cross-Validation results of all trials.

	
property decision_function: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[...], List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | Series [https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series] | List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix]]

	Call decision_function on the best estimator.

This is available only if the underlying estimator supports
decision_function and refit is set to True [https://docs.python.org/3/library/constants.html#True].

	
fit(X, y=None, groups=None, **fit_params)

	Run fit with all sets of parameters.

	Parameters:

	
	X (List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix]) – Training data.

	y (List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | Series [https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series] | List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix] | None) – Target variable.

	groups (List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | Series [https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series] | None) – Group labels for the samples used while splitting the dataset
into train/validation set.

	**fit_params (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Parameters passed to fit on the estimator.

	Returns:

	self.

	Return type:

	OptunaSearchCV

	
get_metadata_routing()

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.

	Returns:

	routing – A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.

	Return type:

	MetadataRequest

	
get_params(deep=True)

	Get parameters for this estimator.

	Parameters:

	deep (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.

	Returns:

	params – Parameter names mapped to their values.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
property inverse_transform: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[...], List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix]]

	Call inverse_transform on the best estimator.

This is available only if the underlying estimator supports
inverse_transform and refit is set to True [https://docs.python.org/3/library/constants.html#True].

	
property n_trials_: int [https://docs.python.org/3/library/functions.html#int]

	Actual number of trials.

	
property predict: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[...], List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | Series [https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series] | List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix]]

	Call predict on the best estimator.

This is available only if the underlying estimator supports predict
and refit is set to True [https://docs.python.org/3/library/constants.html#True].

	
property predict_log_proba: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[...], List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix]]

	Call predict_log_proba on the best estimator.

This is available only if the underlying estimator supports
predict_log_proba and refit is set to True [https://docs.python.org/3/library/constants.html#True].

	
property predict_proba: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[...], List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix]]

	Call predict_proba on the best estimator.

This is available only if the underlying estimator supports
predict_proba and refit is set to True [https://docs.python.org/3/library/constants.html#True].

	
score(X, y=None)

	Return the score on the given data.

	Parameters:

	
	X (List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix]) – Data.

	y (List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | Series [https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series] | List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix] | None) – Target variable.

	Returns:

	Scaler score.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
property score_samples: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[...], List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | Series [https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series]]

	Call score_samples on the best estimator.

This is available only if the underlying estimator supports
score_samples and refit is set to True [https://docs.python.org/3/library/constants.html#True].

	
set_fit_request(*, groups='$UNCHANGED$')

	Request metadata passed to the fit method.

Note that this method is only relevant if
enable_metadata_routing=True (see sklearn.set_config() [https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config]).
Please see User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.

The options for each parameter are:

	True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.

	False: metadata is not requested and the meta-estimator will not pass it to fit.

	None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

	str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the
existing request. This allows you to change the request for some
parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]. Otherwise it has no effect.

	Parameters:

	
	groups (str [https://docs.python.org/3/library/stdtypes.html#str], True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for groups parameter in fit.

	self (OptunaSearchCV) –

	Returns:

	self – The updated object.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
set_params(**params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.

	Parameters:

	**params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Estimator parameters.

	Returns:

	self – Estimator instance.

	Return type:

	estimator instance

	
property set_user_attr: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[...], None [https://docs.python.org/3/library/constants.html#None]]

	Call set_user_attr on the Study.

	
property transform: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[...], List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix]]

	Call transform on the best estimator.

This is available only if the underlying estimator supports
transform and refit is set to True [https://docs.python.org/3/library/constants.html#True].

	
property trials_: list [https://docs.python.org/3/library/stdtypes.html#list][FrozenTrial]

	All trials in the Study.

	
property trials_dataframe: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[...], DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame]]

	Call trials_dataframe on the Study.

	
property user_attrs_: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	User attributes in the Study.

 optuna_integration.SkorchPruningCallback

optuna_integration.SkorchPruningCallback

	
class optuna_integration.SkorchPruningCallback(trial, monitor)

	Skorch callback to prune unpromising trials.

New in version 2.1.0.

	Parameters:

	
	trial (Trial) – A Trial corresponding to the current evaluation of the
objective function.

	monitor (str [https://docs.python.org/3/library/stdtypes.html#str]) – An evaluation metric for pruning, e.g. val_loss or
val_acc. The metrics are obtained from the returned dictionaries,
i.e., net.histroy. The names thus depend on how this dictionary
is formatted.

Methods

	on_epoch_end(net, **kwargs)

	

 optuna_integration.TensorBoardCallback

optuna_integration.TensorBoardCallback

	
class optuna_integration.TensorBoardCallback(dirname, metric_name)

	Callback to track Optuna trials with TensorBoard.

This callback adds relevant information that is tracked by Optuna to TensorBoard.

See the example [https://github.com/optuna/optuna-examples/blob/main/tensorboard/tensorboard_simple.py].

	Parameters:

	
	dirname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Directory to store TensorBoard logs.

	metric_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the metric. Since the metric itself is just a number,
metric_name can be used to give it a name. So you know later
if it was roc-auc or accuracy.

Note

Added in v2.0.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.0.0.

 optuna_integration.TFKerasPruningCallback

optuna_integration.TFKerasPruningCallback

	
class optuna_integration.TFKerasPruningCallback(trial, monitor)

	tf.keras callback to prune unpromising trials.

This callback is intend to be compatible for TensorFlow v1 and v2,
but only tested with TensorFlow v2.

See the example [https://github.com/optuna/optuna-examples/blob/main/tfkeras/tfkeras_integration.py]
if you want to add a pruning callback which observes the validation accuracy.

	Parameters:

	
	trial (Trial) – A Trial corresponding to the current evaluation of the
objective function.

	monitor (str [https://docs.python.org/3/library/stdtypes.html#str]) – An evaluation metric for pruning, e.g., val_loss or val_acc.

Methods

	on_epoch_end(epoch[, logs])

	

 optuna_integration.WeightsAndBiasesCallback

optuna_integration.WeightsAndBiasesCallback

	
class optuna_integration.WeightsAndBiasesCallback(metric_name='value', wandb_kwargs=None, as_multirun=False)

	Callback to track Optuna trials with Weights & Biases.

This callback enables tracking of Optuna study in
Weights & Biases. The study is tracked as a single experiment
run, where all suggested hyperparameters and optimized metrics
are logged and plotted as a function of optimizer steps.

Note

User needs to be logged in to Weights & Biases before
using this callback in online mode. For more information, please
refer to wandb setup [https://docs.wandb.ai/quickstart#1-set-up-wandb].

Note

Users who want to run multiple Optuna studies within the same process
should call wandb.finish() between subsequent calls to
study.optimize(). Calling wandb.finish() is not necessary
if you are running one Optuna study per process.

Note

To ensure correct trial order in Weights & Biases, this callback
should only be used with study.optimize(n_jobs=1).

Example

Add Weights & Biases callback to Optuna optimization.

import optuna
from optuna_integration.wandb import WeightsAndBiasesCallback

def objective(trial):
 x = trial.suggest_float("x", -10, 10)
 return (x - 2) ** 2

study = optuna.create_study()

wandb_kwargs = {"project": "my-project"}
wandbc = WeightsAndBiasesCallback(wandb_kwargs=wandb_kwargs)

study.optimize(objective, n_trials=10, callbacks=[wandbc])

Weights & Biases logging in multirun mode.

import optuna
from optuna_integration.wandb import WeightsAndBiasesCallback

wandb_kwargs = {"project": "my-project"}
wandbc = WeightsAndBiasesCallback(wandb_kwargs=wandb_kwargs, as_multirun=True)

@wandbc.track_in_wandb()
def objective(trial):
 x = trial.suggest_float("x", -10, 10)
 return (x - 2) ** 2

study = optuna.create_study()
study.optimize(objective, n_trials=10, callbacks=[wandbc])

	Parameters:

	
	metric_name (str [https://docs.python.org/3/library/stdtypes.html#str] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Name assigned to optimized metric. In case of multi-objective optimization,
list of names can be passed. Those names will be assigned
to metrics in the order returned by objective function.
If single name is provided, or this argument is left to default value,
it will be broadcasted to each objective with a number suffix in order
returned by objective function e.g. two objectives and default metric name
will be logged as value_0 and value_1. The number of metrics must be
the same as the number of values objective function returns.

	wandb_kwargs (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None) – Set of arguments passed when initializing Weights & Biases run.
Please refer to Weights & Biases API documentation [https://docs.wandb.ai/ref/python/init] for more details.

	as_multirun (bool [https://docs.python.org/3/library/functions.html#bool]) – Creates new runs for each trial. Useful for generating W&B Sweeps like
panels (for ex., parameter importance, parallel coordinates, etc).

Note

Added in v2.9.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.9.0.

Methods

	track_in_wandb()

	Decorator for using W&B for logging inside the objective function.

	
track_in_wandb()

	Decorator for using W&B for logging inside the objective function.

The run is initialized with the same wandb_kwargs that are passed to the callback.
All the metrics from inside the objective function will be logged into the same run
which stores the parameters for a given trial.

Example

Add additional logging to Weights & Biases.

import optuna
from optuna_integration.wandb import WeightsAndBiasesCallback
import wandb

wandb_kwargs = {"project": "my-project"}
wandbc = WeightsAndBiasesCallback(wandb_kwargs=wandb_kwargs, as_multirun=True)

@wandbc.track_in_wandb()
def objective(trial):
 x = trial.suggest_float("x", -10, 10)
 wandb.log({"power": 2, "base of metric": x - 2})

 return (x - 2) ** 2

study = optuna.create_study()
study.optimize(objective, n_trials=10, callbacks=[wandbc])

	Returns:

	Objective function with W&B tracking enabled.

	Return type:

	Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

Note

Added in v3.0.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.

 optuna_integration.XGBoostPruningCallback

optuna_integration.XGBoostPruningCallback

	
class optuna_integration.XGBoostPruningCallback(trial, observation_key)

	Callback for XGBoost to prune unpromising trials.

See the example [https://github.com/optuna/optuna-examples/blob/main/xgboost/xgboost_integration.py]
if you want to add a pruning callback which observes validation accuracy of
a XGBoost model.

	Parameters:

	
	trial (Trial) – A Trial corresponding to the current evaluation of the
objective function.

	observation_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – An evaluation metric for pruning, e.g., validation-error and
validation-merror. When using the Scikit-Learn API, the index number of
eval_set must be included in the observation_key, e.g.,
validation_0-error and validation_0-merror. Please refer to eval_metric
in XGBoost reference [https://xgboost.readthedocs.io/en/latest/parameter.html]
for further details.

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 | X

A

 	
 	after_iteration() (optuna_integration.CatBoostPruningCallback method)

 	after_trial() (optuna_integration.BoTorchSampler method)

 	(optuna_integration.CmaEsSampler method)

 	(optuna_integration.PyCmaSampler method)

 	(optuna_integration.SkoptSampler method)

 	
 	AllenNLPExecutor (class in optuna_integration)

 	AllenNLPPruningCallback (class in optuna_integration)

B

 	
 	before_trial() (optuna_integration.BoTorchSampler method)

 	(optuna_integration.CmaEsSampler method)

 	(optuna_integration.PyCmaSampler method)

 	(optuna_integration.SkoptSampler method)

 	best_estimator_ (optuna_integration.OptunaSearchCV attribute)

 	best_index_ (optuna_integration.OptunaSearchCV property)

 	best_params (optuna_integration.lightgbm.LightGBMTuner property)

 	(optuna_integration.lightgbm.LightGBMTunerCV property)

 	
 	best_params_ (optuna_integration.OptunaSearchCV property)

 	best_score (optuna_integration.lightgbm.LightGBMTuner property)

 	(optuna_integration.lightgbm.LightGBMTunerCV property)

 	best_score_ (optuna_integration.OptunaSearchCV property)

 	best_trial_ (optuna_integration.OptunaSearchCV property)

 	BoTorchSampler (class in optuna_integration)

C

 	
 	CatalystPruningCallback (class in optuna_integration)

 	CatBoostPruningCallback (class in optuna_integration)

 	ChainerMNStudy (class in optuna_integration)

 	ChainerPruningExtension (class in optuna_integration)

 	check_pruned() (optuna_integration.CatBoostPruningCallback method)

 	(optuna_integration.PyTorchLightningPruningCallback method)

 	
 	check_trial_is_updatable() (optuna_integration.DaskStorage method)

 	classes_ (optuna_integration.OptunaSearchCV property)

 	CmaEsSampler (class in optuna_integration)

 	create_new_study() (optuna_integration.DaskStorage method)

 	create_new_trial() (optuna_integration.DaskStorage method)

 	cv_results_ (optuna_integration.OptunaSearchCV property)

D

 	
 	DaskStorage (class in optuna_integration)

 	decision_function (optuna_integration.OptunaSearchCV property)

 	
 	delete_study() (optuna_integration.DaskStorage method)

 	dump_best_config() (in module optuna_integration.allennlp)

E

 	
 	ehvi_candidates_func() (in module optuna_integration.botorch)

 	
 	evaluate() (optuna_integration.ShapleyImportanceEvaluator method)

F

 	
 	FastAIPruningCallback (in module optuna_integration)

 	FastAIV1PruningCallback (class in optuna_integration)

 	
 	FastAIV2PruningCallback (class in optuna_integration)

 	fit() (optuna_integration.OptunaSearchCV method)

G

 	
 	get_all_studies() (optuna_integration.DaskStorage method)

 	get_all_trials() (optuna_integration.DaskStorage method)

 	get_base_storage() (optuna_integration.DaskStorage method)

 	get_best_booster() (optuna_integration.lightgbm.LightGBMTuner method)

 	(optuna_integration.lightgbm.LightGBMTunerCV method)

 	get_best_trial() (optuna_integration.DaskStorage method)

 	get_metadata_routing() (optuna_integration.OptunaSearchCV method)

 	get_n_trials() (optuna_integration.DaskStorage method)

 	get_params() (optuna_integration.OptunaSearchCV method)

 	get_study_directions() (optuna_integration.DaskStorage method)

 	
 	get_study_id_from_name() (optuna_integration.DaskStorage method)

 	get_study_name_from_id() (optuna_integration.DaskStorage method)

 	get_study_system_attrs() (optuna_integration.DaskStorage method)

 	get_study_user_attrs() (optuna_integration.DaskStorage method)

 	get_trial() (optuna_integration.DaskStorage method)

 	get_trial_id_from_study_id_trial_number() (optuna_integration.DaskStorage method)

 	get_trial_number_from_id() (optuna_integration.DaskStorage method)

 	get_trial_param() (optuna_integration.DaskStorage method)

 	get_trial_params() (optuna_integration.DaskStorage method)

 	get_trial_system_attrs() (optuna_integration.DaskStorage method)

 	get_trial_user_attrs() (optuna_integration.DaskStorage method)

I

 	
 	infer_relative_search_space() (optuna_integration.BoTorchSampler method)

 	(optuna_integration.CmaEsSampler method)

 	(optuna_integration.PyCmaSampler method)

 	(optuna_integration.SkoptSampler method)

 	
 	inverse_transform (optuna_integration.OptunaSearchCV property)

K

 	
 	KerasPruningCallback (class in optuna_integration)

L

 	
 	LightGBMPruningCallback (class in optuna_integration)

 	LightGBMTuner (class in optuna_integration.lightgbm)

 	
 	LightGBMTunerCV (class in optuna_integration.lightgbm)

 	logei_candidates_func() (in module optuna_integration.botorch)

M

 	
 	MLflowCallback (class in optuna_integration)

 	
 	MXNetPruningCallback (class in optuna_integration)

N

 	
 	n_splits_ (optuna_integration.OptunaSearchCV attribute)

 	
 	n_trials_ (optuna_integration.OptunaSearchCV property)

O

 	
 	on_epoch() (optuna_integration.AllenNLPPruningCallback method)

 	
 	optimize() (optuna_integration.ChainerMNStudy method)

 	OptunaSearchCV (class in optuna_integration)

P

 	
 	predict (optuna_integration.OptunaSearchCV property)

 	predict_log_proba (optuna_integration.OptunaSearchCV property)

 	predict_proba (optuna_integration.OptunaSearchCV property)

 	
 	PyCmaSampler (class in optuna_integration)

 	PyTorchIgnitePruningHandler (class in optuna_integration)

 	PyTorchLightningPruningCallback (class in optuna_integration)

Q

 	
 	qehvi_candidates_func() (in module optuna_integration.botorch)

 	qei_candidates_func() (in module optuna_integration.botorch)

 	
 	qnehvi_candidates_func() (in module optuna_integration.botorch)

 	qnei_candidates_func() (in module optuna_integration.botorch)

 	qparego_candidates_func() (in module optuna_integration.botorch)

R

 	
 	refit_time_ (optuna_integration.OptunaSearchCV attribute)

 	register() (optuna_integration.AllenNLPPruningCallback class method)

 	remove_session() (optuna_integration.DaskStorage method)

 	reseed_rng() (optuna_integration.BoTorchSampler method)

 	(optuna_integration.CmaEsSampler method)

 	(optuna_integration.PyCmaSampler method)

 	(optuna_integration.SkoptSampler method)

 	
 	run() (optuna_integration.AllenNLPExecutor method)

 	(optuna_integration.lightgbm.LightGBMTuner method)

 	(optuna_integration.lightgbm.LightGBMTunerCV method)

S

 	
 	sample_independent() (optuna_integration.BoTorchSampler method)

 	(optuna_integration.CmaEsSampler method)

 	(optuna_integration.PyCmaSampler method)

 	(optuna_integration.SkoptSampler method)

 	sample_indices_ (optuna_integration.OptunaSearchCV attribute)

 	sample_relative() (optuna_integration.BoTorchSampler method)

 	(optuna_integration.CmaEsSampler method)

 	(optuna_integration.PyCmaSampler method)

 	(optuna_integration.SkoptSampler method)

 	sample_train_set() (optuna_integration.lightgbm.LightGBMTuner method)

 	(optuna_integration.lightgbm.LightGBMTunerCV method)

 	score() (optuna_integration.OptunaSearchCV method)

 	score_samples (optuna_integration.OptunaSearchCV property)

 	scorer_ (optuna_integration.OptunaSearchCV attribute)

 	set_fit_request() (optuna_integration.OptunaSearchCV method)

 	set_params() (optuna_integration.OptunaSearchCV method)

 	
 	set_study_system_attr() (optuna_integration.DaskStorage method)

 	set_study_user_attr() (optuna_integration.DaskStorage method)

 	set_system_attr() (optuna_integration.TorchDistributedTrial method)

 	set_trial_intermediate_value() (optuna_integration.DaskStorage method)

 	set_trial_param() (optuna_integration.DaskStorage method)

 	set_trial_state_values() (optuna_integration.DaskStorage method)

 	set_trial_system_attr() (optuna_integration.DaskStorage method)

 	set_trial_user_attr() (optuna_integration.DaskStorage method)

 	set_user_attr (optuna_integration.OptunaSearchCV property)

 	ShapleyImportanceEvaluator (class in optuna_integration)

 	SkoptSampler (class in optuna_integration)

 	SkorchPruningCallback (class in optuna_integration)

 	study_ (optuna_integration.OptunaSearchCV attribute)

 	suggest_discrete_uniform() (optuna_integration.TorchDistributedTrial method)

 	suggest_loguniform() (optuna_integration.TorchDistributedTrial method)

 	suggest_uniform() (optuna_integration.TorchDistributedTrial method)

 	system_attrs (optuna_integration.TorchDistributedTrial property)

T

 	
 	TensorBoardCallback (class in optuna_integration)

 	TFKerasPruningCallback (class in optuna_integration)

 	TorchDistributedTrial (class in optuna_integration)

 	track_in_mlflow() (optuna_integration.MLflowCallback method)

 	
 	track_in_wandb() (optuna_integration.WeightsAndBiasesCallback method)

 	train() (in module optuna_integration.lightgbm)

 	transform (optuna_integration.OptunaSearchCV property)

 	trials_ (optuna_integration.OptunaSearchCV property)

 	trials_dataframe (optuna_integration.OptunaSearchCV property)

U

 	
 	user_attrs_ (optuna_integration.OptunaSearchCV property)

W

 	
 	WeightsAndBiasesCallback (class in optuna_integration)

X

 	
 	XGBoostPruningCallback (class in optuna_integration)

 Privacy Policy

Privacy Policy

Google Analytics

To collect information about how visitors use our website and to improve our services, we are using Google Analytics on this website. You can find out more about how Google Analytics works and about how information is collected on the Google Analytics terms of services and on Google’s privacy policy.

	Google Analytics Terms of Service: http://www.google.com/analytics/terms/us.html

	Google Privacy Policy: https://policies.google.com/privacy?hl=en

	Google Analytics Opt-out Add-on: https://tools.google.com/dlpage/gaoptout?hl=en

_static/plus.png

_static/file.png

_static/minus.png

_static/optuna-logo.png
@© O0OPTUNR

nav.xhtml

 Table of Contents

 		
 Optuna-Integration: The integration modules of Optuna

 		
 Installation

 		
 API Reference for Optuna-Integration

 		
 AllenNLP

 		
 optuna_integration.AllenNLPExecutor

 		
 optuna_integration.allennlp.dump_best_config

 		
 optuna_integration.AllenNLPPruningCallback

 		
 BoTorch

 		
 optuna_integration.BoTorchSampler

 		
 optuna_integration.botorch.ehvi_candidates_func

 		
 optuna_integration.botorch.logei_candidates_func

 		
 optuna_integration.botorch.qei_candidates_func

 		
 optuna_integration.botorch.qnei_candidates_func

 		
 optuna_integration.botorch.qehvi_candidates_func

 		
 optuna_integration.botorch.qnehvi_candidates_func

 		
 optuna_integration.botorch.qparego_candidates_func

 		
 Catalyst

 		
 optuna_integration.CatalystPruningCallback

 		
 CatBoost

 		
 optuna_integration.CatBoostPruningCallback

 		
 Chainer

 		
 optuna_integration.ChainerPruningExtension

 		
 optuna_integration.ChainerMNStudy

 		
 Dask

 		
 optuna_integration.DaskStorage

 		
 fast.ai

 		
 optuna_integration.FastAIV1PruningCallback

 		
 optuna_integration.FastAIV2PruningCallback

 		
 optuna_integration.FastAIPruningCallback

 		
 Keras

 		
 optuna_integration.KerasPruningCallback

 		
 LightGBM

 		
 optuna_integration.LightGBMPruningCallback

 		
 optuna_integration.lightgbm.train

 		
 optuna_integration.lightgbm.LightGBMTuner

 		
 optuna_integration.lightgbm.LightGBMTunerCV

 		
 MLflow

 		
 optuna_integration.MLflowCallback

 		
 MXNet

 		
 optuna_integration.MXNetPruningCallback

 		
 pycma

 		
 optuna_integration.CmaEsSampler

 		
 optuna_integration.PyCmaSampler

 		
 PyTorch

 		
 optuna_integration.PyTorchIgnitePruningHandler

 		
 optuna_integration.PyTorchLightningPruningCallback

 		
 optuna_integration.TorchDistributedTrial

 		
 scikit-optimize

 		
 optuna_integration.SkoptSampler

 		
 SHAP

 		
 optuna_integration.ShapleyImportanceEvaluator

 		
 sklearn

 		
 optuna_integration.OptunaSearchCV

 		
 skorch

 		
 optuna_integration.SkorchPruningCallback

 		
 TensorBoard

 		
 optuna_integration.TensorBoardCallback

 		
 TensorFlow

 		
 optuna_integration.TFKerasPruni