API Reference for Optuna-Integration

The Optuna-Integration package contains classes used to integrate Optuna with external machine learning frameworks.

All of these classes can be imported in two ways. One is “from optuna.integration import xxx” like a module in Optuna, and the other is “from optuna_integration import xxx” as an Optuna-Integration specific module. The former is provided for backward compatibility.

For most of the ML frameworks supported by Optuna, the corresponding Optuna integration class serves only to implement a callback object and functions, compliant with the framework’s specific callback API, to be called with each intermediate step in the model training. The functionality implemented in these callbacks across the different ML frameworks includes:

  1. Reporting intermediate model scores back to the Optuna trial using optuna.trial.Trial.report,

  2. According to the results of optuna.trial.Trial.should_prune, pruning the current model by raising optuna.TrialPruned, and

  3. Reporting intermediate Optuna data such as the current trial number back to the framework, as done in MLflowCallback.

For scikit-learn, an integrated OptunaSearchCV estimator is available that combines scikit-learn BaseEstimator functionality with access to a class-level Study object.

AllenNLP

optuna_integration.AllenNLPExecutor

AllenNLP extension to use optuna with Jsonnet config file.

optuna_integration.allennlp.dump_best_config

Save JSON config file with environment variables and best performing hyperparameters.

optuna_integration.AllenNLPPruningCallback

AllenNLP callback to prune unpromising trials.

BoTorch

optuna_integration.BoTorchSampler

A sampler that uses BoTorch, a Bayesian optimization library built on top of PyTorch.

optuna_integration.botorch.ehvi_candidates_func

Expected Hypervolume Improvement (EHVI).

optuna_integration.botorch.logei_candidates_func

Log Expected Improvement (LogEI).

optuna_integration.botorch.qei_candidates_func

Quasi MC-based batch Expected Improvement (qEI).

optuna_integration.botorch.qnei_candidates_func

Quasi MC-based batch Noisy Expected Improvement (qNEI).

optuna_integration.botorch.qkg_candidates_func

Quasi MC-based batch Knowledge Gradient (qKG).

optuna_integration.botorch.qehvi_candidates_func

Quasi MC-based batch Expected Hypervolume Improvement (qEHVI).

optuna_integration.botorch.qnehvi_candidates_func

Quasi MC-based batch Noisy Expected Hypervolume Improvement (qNEHVI).

optuna_integration.botorch.qparego_candidates_func

Quasi MC-based extended ParEGO (qParEGO) for constrained multi-objective optimization.

optuna_integration.botorch.qhvkg_candidates_func

Quasi MC-based batch Hypervolume Knowledge Gradient (qHVKG).

CatBoost

optuna_integration.CatBoostPruningCallback

Callback for catboost to prune unpromising trials.

Chainer

optuna_integration.ChainerPruningExtension

Chainer extension to prune unpromising trials.

optuna_integration.ChainerMNStudy

A wrapper of Study to incorporate Optuna with ChainerMN.

Comet

optuna_integration.CometCallback

A callback for logging Optuna study trials to a Comet ML Experiment.

Dask

optuna_integration.DaskStorage

Dask-compatible storage class.

fast.ai

optuna_integration.FastAIV2PruningCallback

FastAI callback to prune unpromising trials for fastai.

optuna_integration.FastAIPruningCallback

alias of FastAIV2PruningCallback

Keras

optuna_integration.KerasPruningCallback

Keras callback to prune unpromising trials.

LightGBM

optuna_integration.LightGBMPruningCallback

Callback for LightGBM to prune unpromising trials.

optuna_integration.lightgbm.train

Wrapper of LightGBM Training API to tune hyperparameters.

optuna_integration.lightgbm.LightGBMTuner

Hyperparameter tuner for LightGBM.

optuna_integration.lightgbm.LightGBMTunerCV

Hyperparameter tuner for LightGBM with cross-validation.

MLflow

optuna_integration.MLflowCallback

Callback to track Optuna trials with MLflow.

MXNet

optuna_integration.MXNetPruningCallback

MXNet callback to prune unpromising trials.

pycma

optuna_integration.PyCmaSampler

A Sampler using cma library as the backend.

PyTorch

optuna_integration.PyTorchIgnitePruningHandler

PyTorch Ignite handler to prune unpromising trials.

optuna_integration.PyTorchLightningPruningCallback

PyTorch Lightning callback to prune unpromising trials.

optuna_integration.TorchDistributedTrial

A wrapper of Trial to incorporate Optuna with PyTorch distributed.

SHAP

optuna_integration.ShapleyImportanceEvaluator

Shapley (SHAP) parameter importance evaluator.

sklearn

optuna_integration.OptunaSearchCV

Hyperparameter search with cross-validation.

skorch

optuna_integration.SkorchPruningCallback

Skorch callback to prune unpromising trials.

TensorBoard

optuna_integration.TensorBoardCallback

Callback to track Optuna trials with TensorBoard.

TensorFlow

optuna_integration.TFKerasPruningCallback

tf.keras callback to prune unpromising trials.

Weights & Biases

optuna_integration.WeightsAndBiasesCallback

Callback to track Optuna trials with Weights & Biases.

XGBoost

optuna_integration.XGBoostPruningCallback

Callback for XGBoost to prune unpromising trials.